Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danielle Stephens is active.

Publication


Featured researches published by Danielle Stephens.


PLOS ONE | 2014

Metabolic Disease Risk in Children by Salivary Biomarker Analysis

J. Max Goodson; Alpdogan Kantarci; Mor-Li Hartman; Gerald V. Denis; Danielle Stephens; Hatice Hasturk; Tina Yaskell; Jorel Vargas; Xiaoshan Wang; Maryann Cugini; Roula Barake; Osama Alsmadi; Sabiha Al-Mutawa; Jitendra Ariga; Pramod Soparkar; Jawad Behbehani; Kazem Behbehani; Francine K. Welty

Objective The study of obesity-related metabolic syndrome or Type 2 diabetes (T2D) in children is particularly difficult because of fear of needles. We tested a non-invasive approach to study inflammatory parameters in an at-risk population of children to provide proof-of-principle for future investigations of vulnerable subjects. Design and Methods We evaluated metabolic differences in 744, 11-year old children selected from underweight, normal healthy weight, overweight and obese categories by analyzing fasting saliva samples for 20 biomarkers. Saliva supernatants were obtained following centrifugation and used for analyses. Results Salivary C-reactive protein (CRP) was 6 times higher, salivary insulin and leptin were 3 times higher, and adiponectin was 30% lower in obese children compared to healthy normal weight children (all P<0.0001). Categorical analysis suggested that there might be three types of obesity in children. Distinctly inflammatory characteristics appeared in 76% of obese children while in 13%, salivary insulin was high but not associated with inflammatory mediators. The remaining 11% of obese children had high insulin and reduced adiponectin. Forty percent of the non-obese children were found in groups which, based on biomarker characteristics, may be at risk for becoming obese. Conclusions Significantly altered levels of salivary biomarkers in obese children from a high-risk population, suggest the potential for developing non-invasive screening procedures to identify T2D-vulnerable individuals and a means to test preventative strategies.


Biochemistry | 2010

Characterization of Recombinant Lysyl Oxidase Propeptide

Siddharth R. Vora; Ying Guo; Danielle Stephens; Erdjan Salih; Emile D. Vu; Kathrin H. Kirsch; Gail E. Sonenshein; Philip C. Trackman

Lysyl oxidase enzyme activity is critical for the biosynthesis of mature and functional collagens and elastin. In addition, lysyl oxidase has tumor suppressor activity that has been shown to depend on the propeptide region (LOX-PP) derived from pro-lysyl oxidase (Pro-LOX) and not on lysyl oxidase enzyme activity. Pro-LOX is secreted as a 50 kDa proenzyme and then undergoes biosynthetic proteolytic processing to active approximately 30 kDa LOX enzyme and LOX-PP. The present study reports the efficient recombinant expression and purification of rat LOX-PP. Moreover, using enzymatic deglycosylation and DTT derivatization combined with mass spectrometry technologies, it is shown for the first time that rLOX-PP and naturally occurring LOX-PP contain both N- and O-linked carbohydrates. Structure predictions furthermore suggest that LOX-PP is a mostly disordered protein, which was experimentally confirmed in circular dichroism studies. Due to its high isoelectric point and its disordered structure, we propose that LOX-PP can associate with extracellular and intracellular binding partners to affect its known biological activities as a tumor suppressor and inhibitor of cell proliferation.


PLOS ONE | 2012

Recombinant Lysyl Oxidase Propeptide Protein Inhibits Growth and Promotes Apoptosis of Pre-Existing Murine Breast Cancer Xenografts

Manish V. Bais; Matthew A. Nugent; Danielle Stephens; S. Selva Sume; Kathrin H. Kirsch; Gail E. Sonenshein; Philip C. Trackman

Lysyl oxidase propeptide (LOX-PP) ectopic overexpression inhibits the growth of cancer xenografts. Here the ability and mode of action of purified recombinant LOX-PP (rLOX-PP) protein to inhibit the growth of pre-existing xenografts was determined. Experimental approaches employed were direct intratumoral injection (i.t.) of rLOX-PP protein into murine breast cancer NF639 xenografts, and application of a slow release formulation of rLOX-PP implanted adjacent to tumors in NCR nu/nu mice (n = 10). Tumors were monitored for growth, and after sacrifice were subjected to immunohistochemical and Western blot analyses for several markers of proliferation, apoptosis, and for rLOX-PP itself. Direct i.t. injection of rLOX-PP significantly reduced tumor volume on days 20, 22 and 25 and tumor weight at harvest on day 25 by 30% compared to control. Implantation of beads preloaded with 35 micrograms rLOX-PP (n = 10) in vivo reduced tumor volume and weight at sacrifice when compared to empty beads (p<0.05). A 30% reduction of tumor volume on days 22 and 25 (p<0.05) and final tumor weight on day 25 (p<0.05) were observed with a reduced tumor growth rate of 60% after implantation. rLOX-PP significantly reduced the expression of proliferation markers and Erk1/2 MAP kinase activation, while prominent increases in apoptosis markers were observed. rLOX-PP was detected by immunohistochemistry in harvested rLOX-PP tumors, but not in controls. Data provide pre-clinical findings that support proof of principle for the therapeutic anti-cancer potential of rLOX-PP protein formulations.


PLOS ONE | 2013

Performance of Multiplex Cytokine Assays in Serum and Saliva among Community-Dwelling Postmenopausal Women

Richard W. Browne; Alpdogan Kantarci; Michael J. LaMonte; Chris Andrews; Kathleen M. Hovey; Karen L. Falkner; Ali Cekici; Danielle Stephens; Robert J. Genco; Frank A. Scannapieco; Thomas E. Van Dyke; Jean Wactawski-Wende

Multiplexing arrays increase the throughput and decrease sample requirements for studies employing multiple biomarkers. The goal of this project was to examine the performance of Multiplex arrays for measuring multiple protein biomarkers in saliva and serum. Specimens from the OsteoPerio ancillary study of the Women’s Health Initiative Observational Study were used. Participants required the presence of at least 6 teeth and were excluded based on active cancer and certain bone issues but were not selected on any specific condition. Quality control (QC) samples were created from pooled serum and saliva. Twenty protein markers were measured on five multiplexing array panels. Sample pretreatment conditions were optimized for each panel. Recovery, lower limit of quantification (LLOQ) and imprecision were determined for each analyte. Statistical adjustment at the plate level was used to reduce imprecision estimates and increase the number of usable observations. Sample pre-treatment improved recovery estimates for many analytes. The LLOQ for each analyte agreed with manufacturer specifications except for MMP-1 and MMP-2 which were significantly higher than reported. Following batch adjustment, 17 of 20 biomarkers in serum and 9 of 20 biomarkers in saliva demonstrated acceptable precision, defined as <20% coefficient of variation (<25% at LLOQ). The percentage of cohort samples having levels within the reportable range for each analyte varied from 10% to 100%. The ratio of levels in saliva to serum varied from 1∶100 to 28∶1. Correlations between saliva and serum were of moderate positive magnitude and significant for CRP, MMP-2, insulin, adiponectin, GM-CSF and IL-5. Multiplex arrays exhibit high levels of analytical imprecision, particularly at the batch level. Careful sample pre-treatment can enhance recovery and reduce imprecision. Following statistical adjustments to reduce batch effects, we identified biomarkers that are of acceptable quality in serum and to a lesser degree in saliva using Multiplex arrays.


Journal of Biological Chemistry | 2011

Lysyl Oxidase-like-2 (LOXL2) Is a Major Isoform in Chondrocytes and Is Critically Required for Differentiation

Mussadiq Iftikhar; Paola A. Hurtado; Manish V. Bais; Nate Wigner; Danielle Stephens; Louis C. Gerstenfeld; Philip C. Trackman

The lysyl oxidase family is made up of five members: lysyl oxidase (LOX) and lysyl oxidase-like 1–4 (LOXL1-LOXL4). All members share conserved C-terminal catalytic domains that provide for lysyl oxidase or lysyl oxidase-like enzyme activity; and more divergent propeptide regions. LOX family enzyme activities catalyze the final enzymatic conversion required for the formation of normal biosynthetic collagen and elastin cross-links. The importance of lysyl oxidase enzyme activity to normal bone development has long been appreciated, but regulation and roles for specific LOX isoforms in bone formation in vivo is largely unexplored. Fracture healing recapitulates aspects of endochondral bone development. The present study first investigated the expression of all LOX isoforms in fracture healing. A remarkable coincidence of LOXL2 expression with the chondrogenic phase of fracture healing was found, prompting more detailed analyses of LOXL2 expression in normal growth plates, and LOXL2 expression and function in developing ATDC5 chondrogenic cells. Data show that LOXL2 is expressed by pre-hypertrophic and hypertrophic chondrocytes in vivo, and that LOXL2 expression is regulated in vitro as a function of chondrocyte differentiation. Moreover, LOXL2 knockdown studies in vitro show that LOXL2 expression is required for ATDC5 chondrocyte cell line differentiation through regulation of SNAIL and SOX9, important transcription factors that control chondrocyte differentiation. Taken together, data provide evidence that LOXL2, like LOX, is a multifunctional protein. LOXL2 promotes chondrocyte differentiation by mechanisms that are likely to include roles as both a regulator and an effector of chondrocyte differentiation.


Hormone and Metabolic Research | 2014

Testosterone Regulates Bone Response to Inflammation

João Paulo Steffens; Bruno S. Herrera; Leila S. Coimbra; Danielle Stephens; Carlos Rossa; Luis Carlos Spolidório; Alpdogan Kantarci; T. E. Van Dyke

This study evaluated the alveolar bone response to testosterone and the impact of Resolvin D2 (RvD2) on testosterone-induced osteoblast function. For the in vivo characterization, 60 male adult rats were used. Treatments established sub-physiologic (L), normal (N), or supra-physiologic (H) concentrations of testosterone. Forty rats were subjected to orchiectomy; 20 rats received periodical testosterone injections while 20 rats received testicular sham-operation. Four weeks after the surgeries, 10 rats in each group received a subgingival ligature around the lower first molars to induce experimental periodontal inflammation and bone loss. In parallel, osteoblasts were differentiated from neonatal mice calvariae and treated with various doses of testosterone for 48 h. Cell lysates and conditioned media were used for the determination of alkaline phosphatase, osteocalcin, RANKL, and osteoprotegerin. Micro-computed tomography linear analysis demonstrated that bone loss was significantly increased for both L and H groups compared to animals with normal levels of testosterone. Gingival IL-1β expression was increased in the L group (p<0.05). Ten nM testosterone significantly decreased osteocalcin, RANKL, and OPG levels in osteoblasts; 100 nM significantly increased the RANKL:OPG ratio. RvD2 partially reversed the impact of 10 nM testosterone on osteocalcin, RANKL, and OPG. These findings suggest that both L and H testosterone levels increase inflammatory bone loss in male rats. While low testosterone predominantly increases the inflammatory response, high testosterone promotes a higher osteoblast-derived RANKL:OPG ratio. The proresolving mediator RvD2 ameliorates testosterone-derived downregulation of osteocalcin, RANKL, and OPG in primary murine osteoblasts suggesting a direct role of inflammation in osteoblast function.


Microbiology | 2013

Arginine deiminase inhibits Porphyromonas gingivalis surface attachment.

Carla Cugini; Danielle Stephens; Daniel Nguyen; Alpdogan Kantarci; Mary E. Davey

The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.


Journal of Obesity | 2016

Unhealthy Phenotype as Indicated by Salivary Biomarkers: Glucose, Insulin, VEGF-A, and IL-12p70 in Obese Kuwaiti Adolescents

Mor-Li Hartman; J. Max Goodson; Ping Shi; Jorel Vargas; Tina Yaskell; Danielle Stephens; Maryann Cugini; Hatice Hasturk; Roula Barake; Osama Alsmadi; Sabiha Al-Mutawa; Jitendra Ariga; Pramod Soparkar; Jawad Behbehani; Kazem Behbehani; Francine K. Welty

Objective. Here, we investigated the relationships between obesity and the salivary concentrations of insulin, glucose, and 20 metabolic biomarkers in Kuwaiti adolescents. Previously, we have shown that certain salivary metabolic markers can act as surrogates for blood concentrations. Methods. Salivary samples of whole saliva were collected from 8,317 adolescents. Salivary glucose concentration was measured by a high-sensitivity glucose oxidase method implemented on a robotic chemical analyzer. The concentration of salivary insulin and 20 other metabolic biomarkers was assayed in 744 randomly selected saliva samples by multiplexed bead-based immunoassay. Results. Obesity was seen in 26.5% of the adolescents. Salivary insulin predicting hyperinsulinemia occurred in 4.3% of normal-weight adolescents, 8.3% of overweight adolescents, and 25.7% of obese adolescents (p < 0.0001). Salivary glucose predicting hyperglycemia was found in only 3% of obese children and was not predictive (p = 0.89). Elevated salivary glucose and insulin occurring together was associated with elevated vascular endothelial growth factor and reduced salivary interleukin-12. Conclusion. Considering the surrogate nature of salivary insulin and glucose, this study suggests that elevated insulin may be a dominant sign of metabolic disease in adolescent populations. It also appears that a proangiogenic environment may accompany elevated glucose in obese adolescents.


Experimental Neurology | 2018

Combined administration of resolvin E1 and lipoxin A4 resolves inflammation in a murine model of Alzheimer's disease

Alpdogan Kantarci; Nurgul Aytan; Iro Palaska; Danielle Stephens; Leah Crabtree; Claudia Benincasa; Bruce G. Jenkins; Isabel Carreras; Alpaslan Dedeoglu

ABSTRACT Dysfunction in the resolution of inflammation may play a key role in Alzheimers disease (AD). In this study, we found that the levels of specialized pro‐resolving lipid mediators (SPMs) in the hippocampus of 5xFAD mice are significantly lower than in non‐transgenic littermates. We, therefore, tested the hypothesis that treatment with resolvin E1 (RvE1) and lipoxin A4 (LXA4) alone or in combination will reverse the neuroinflammatory process and decrease A&bgr; pathology. 5xFAD mice were treated intraperitoneally starting at 1 month of age with RvE1 or LXA4 alone or in combination at a dose of 1.5 &mgr;g/kg, 3 times a week until 3 months of age. We found that treatment with RvE1 or LXA4 alone or in combination increased the concentration of RvE1, LXA4, and RvD2 in the hippocampus as measured by ELISA. Combination treatment of RvE1 and LXA4 had a more potent effect on the activation of microglia and astrocytes than either treatment alone, measured by immunohistochemistry with Iba1 and GFAP antibodies, respectively. The concentrations of A&bgr;40 and A&bgr;42 were measured by ELISA and the percentage of A&bgr; plaques were analyzed by immunohistochemistry. All treatments single and in combination, decreased the measures of A&bgr; pathology and restored the homeostasis reversing the inflammatory process for inflammatory cytokines and chemokines (GM‐CSF, IFN‐&ggr;, IL‐1&bgr;, IL‐6, IL‐10, TNF‐&agr;, MCP‐1, MIP‐1&agr;, MIP‐1&bgr;, and RANTES) as measured by multiplex immunoassay. Overall, the study showed that the levels of SPMs in the hippocampus of 5xFAD mice were significantly lower than in wild‐type mice; that treatment with RvE1 and LXA4 restored the level of these compounds, reversed the inflammatory process, and decreased the neuroinflammation associated with A&bgr; pathology in 5xFAD mice. HighlightsLevels of RvE1 and LXA4 in the hippocampus of AD mice are lower than in controls.Combined therapy with RvE1 and LXA4 is more effective on inflammatory cells.Therapy with RvE1and/or LXA4 changed amyloid pathology in 5xFAD mice.


Journal of Periodontology | 2017

Strain-Specific Impact of Fusobacterium nucleatum on Neutrophil Function

Şivge Kurgan; Shevali Kansal; Daniel Nguyen; Danielle Stephens; Yannis Koroneos; Hatice Hasturk; Thomas E. Van Dyke; Alpdogan Kantarci

BACKGROUND Neutrophil function is critical for initiation and progression of infecto-inflammatory diseases. Key quorum-sensing plaque bacteria, such as Fusobacterium nucleatum, act as bridging species between early and late colonizer pathogens, such as Porphyromonas gingivalis, as the biofilm ages and periodontal inflammation increases. This study is designed to determine impact of different F. nucleatum strains on neutrophil function. METHODS Cells of human promyelocytic leukemia cell line-60 were differentiated into neutrophil-like cells and cultured with F. nucleatum strains of subspecies (ssp.) nucleatum ATCC 25586, ssp. polymorphum ATCC 10953, and ssp. vincentii ATCC 49256. Neutrophil phagocytosis of F. nucleatum strains and neutrophil apoptosis were analyzed by flow cytometry. Superoxide generation was measured by cytochrome C reduction in the presence and absence of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) (1 μM) stimulation. Proinflammatory cytokine release was determined after 2, 6, and 24 hours of culture in the presence/absence of different F. nucleatum strains. Expression of Toll-like receptor (TLR)2, TLR4, and nuclear factor (NF)-kappa B mRNA levels were analyzed using real-time quantitative polymerase chain reaction. Each experiment was repeated at least three times in triplicate. Data were analyzed using analysis of variance followed by post hoc Bonferroni correction. RESULTS All strains of F. nucleatum significantly increased phagocytic capacity of neutrophils. Neutrophil phagocytosis of F. nucleatum ssp. polymorphum was significantly greater than that of F. nucleatum ssp. vincentii and ssp. nucleatum (P <0.001). F. nucleatum ssp. nucleatum and ssp. polymorphum significantly blocked fMLP-induced superoxide generation (P <0.001). Although F. nucleatum vincentii also reduced superoxide generation (25%), the impact was not as strong as that of ssp. nucleatum (83%) and ssp. polymorphum (100%). All F. nucleatum strains stimulated significant increase in neutrophil apoptosis compared with control (P <0.001) and significantly increased expression of NF-κB mRNA in neutrophils (P <0.05). Levels of interleukin-8 and tumor necrosis factor-α produced by neutrophils were significantly increased in all F. nucleatum groups compared with control (P <0.001). CONCLUSIONS These findings suggest that different strains of F. nucleatum impact neutrophil function in different ways. Two of three subspecies blocked neutrophil superoxide generation in response to a secondary stimulus, preventing oxidative killing by neutrophils. The direct role of bridging species in pathogenesis of periodontitis may be greater than previously suspected in which they create a favorable environment for pathogenic transition of the dental ecosystem.

Collaboration


Dive into the Danielle Stephens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francine K. Welty

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge