Danielle V. Irvine
Royal Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danielle V. Irvine.
Cell | 2007
Mikel Zaratiegui; Danielle V. Irvine; Robert A. Martienssen
Noncoding RNA has long been proposed to control gene expression via sequence-specific interactions with regulatory regions. Here, we review the role of noncoding RNA in heterochromatic silencing and in the silencing of transposable elements (TEs), unpaired DNA in meiosis, and developmentally excised DNA. The role of cotranscriptional processing by RNA interference and by other mechanisms is discussed, as well as parallels with RNA silencing in imprinting, paramutation, polycomb silencing, and X inactivation. Interactions with regulatory sequences may well occur, but at the RNA rather than at the DNA level.
Science | 2006
Danielle V. Irvine; Mikel Zaratiegui; Niraj H. Tolia; Derek B. Goto; Daniel H. Chitwood; Matthew W. Vaughn; Leemor Joshua-Tor; Robert A. Martienssen
Small interfering RNA (siRNA) guides dimethylation of histone H3 lysine-9 (H3K9me2) via the Argonaute and RNA-dependent RNA polymerase complexes, as well as base-pairing with either RNA or DNA. We show that Argonaute requires the conserved aspartate-aspartate-histidine motif for heterochromatic silencing and for ribonuclease H–like cleavage (slicing) of target messages complementary to siRNA. In the fission yeast Schizosaccharomyces pombe, heterochromatic repeats are transcribed by polymerase II. We show that H3K9me2 spreads into silent reporter genes when they are embedded within these transcripts and that spreading requires read-through transcription, as well as slicing by Argonaute. Thus, siRNA guides histone modification by basepairing interactions with RNA.
The EMBO Journal | 2001
Anthony W.I. Lo; Jeffrey M. Craig; Richard Saffery; Paul Kalitsis; Danielle V. Irvine; Elizabeth D. Earle; Dianna J. Magliano; K.H. Andy Choo
Centromere protein A (CENP‐A) is an essential centromere‐specific histone H3 homologue. Using combined chromatin immunoprecipitation and DNA array analysis, we have defined a 330 kb CENP‐A binding domain of a 10q25.3 neocentromere found on the human marker chromosome mardel(10). This domain is situated adjacent to the 80 kb region identified previously as the neocentromere site through lower‐resolution immunofluorescence/FISH analysis of metaphase chromosomes. The 330 kb CENP‐A binding domain shows a depletion of histone H3, providing evidence for the replacement of histone H3 by CENP‐A within centromere‐specific nucleosomes. The DNA within this domain has a high AT‐content comparable to that of α‐satellite, a high prevalence of LINEs and tandem repeats, and fewer SINEs and potential genes than the surrounding region. FISH analysis indicates that the normal 10q25.3 genomic region replicates around mid‐S phase. Neocentromere formation is accompanied by a replication time lag around but not within the CENP‐A binding region, with this lag being significantly more prominent to one side. The availability of fully sequenced genomic markers makes human neocentromeres a powerful model for dissecting the functional domains of complex higher eukaryotic centromeres.
Nature | 2011
Mikel Zaratiegui; Stephane E. Castel; Danielle V. Irvine; Anna Kloc; Jie Ren; Fei Li; Elisa de Castro; Laura Marín; An Yun Chang; Derek B. Goto; W. Zacheus Cande; Francisco Antequera; Benoit Arcangioli; Robert A. Martienssen
Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Richard Saffery; Lee H. Wong; Danielle V. Irvine; Melissa Bateman; Belinda Griffiths; Suzanne M. Cutts; Michael R. Cancilla; Angela C. Cendron; Angela J. Stafford; K.H. Andy Choo
Neocentromeres (NCs) are fully functional centromeres that arise ectopically in noncentromeric regions lacking α-satellite DNA. Using telomere-associated chromosome truncation, we have produced a series of minichromosomes (MiCs) from a mardel(10) marker chromosome containing a previously characterized human NC. These MiCs range in size from ≈0.7 to 1.8 Mb and contain single-copy intact genomic DNA from the 10q25 region. Two of these NC-based Mi-Cs (NC-MiCs) appear circular whereas one is linear. All demonstrate stability in both structure and mitotic transmission in the absence of drug selection. Presence of a functional NC is shown by binding a host of key centromere-associated proteins. These NC-MiCs provide direct evidence for mitotic segregation function of the NC DNA and represent examples of stable mammalian MiCs lacking centromeric repeats.
Nature | 2011
Mikel Zaratiegui; Matthew W. Vaughn; Danielle V. Irvine; Derek B. Goto; Stephen Watt; Jürg Bähler; Benoit Arcangioli; Robert A. Martienssen
Centromere-binding protein B (CENP-B) is a widely conserved DNA binding factor associated with heterochromatin and centromeric satellite repeats. In fission yeast, CENP-B homologues have been shown to silence long terminal repeat (LTR) retrotransposons by recruiting histone deacetylases. However, CENP-B factors also have unexplained roles in DNA replication. Here we show that a molecular function of CENP-B is to promote replication-fork progression through the LTR. Mutants have increased genomic instability caused by replication-fork blockage that depends on the DNA binding factor switch-activating protein 1 (Sap1), which is directly recruited by the LTR. The loss of Sap1-dependent barrier activity allows the unhindered progression of the replication fork, but results in rearrangements deleterious to the retrotransposon. We conclude that retrotransposons influence replication polarity through recruitment of Sap1 and transposition near replication-fork blocks, whereas CENP-B counteracts this activity and promotes fork stability. Our results may account for the role of LTR in fragile sites, and for the association of CENP-B with pericentromeric heterochromatin and tandem satellite repeats.
Chromosome Research | 2004
Danielle V. Irvine; David J. Amor; Jo Perry; Nicolas Sirvent; Florence Pedeutour; K.H. Andy Choo; Richard Saffery
We have expressed an EGFP-CENP-A fusion protein in human cells in order to quantitate the level of CENP-A incorporated into normal and variant human centromeres. The results revealed a 3.2-fold difference in the level of CENP-A incorporation into α-satellite repeat DNA-based centromeres, with the Y centromere showing the lowest level of all normal human chromosomes. Identification of individual chromosomes revealed a statistically significant, though not absolute, correlation between chromosome size and CENP-A incorporation. Analysis of three independent neocentromeres revealed a significantly reduced level of CENP-A compared to normal centromeres. Truncation of a neocentric marker chromosome to produce a minichromosome further reduced CENP-A levels, indicating a remodelling of centromeric chromatin. These results suggest a role for increased CENP-A incorporation in the faithful segregation of larger chromosomes and support a model of centromere evolution in which neocentromeres represent ancestral centromeres that, through adaptive evolution, acquire satellite repeats to facilitate the incorporation of higher numbers of CENP-A containing nucleosomes, thereby facilitating the assembly of larger kinetochore structures.
Genome Research | 2009
Danielle V. Irvine; Derek B. Goto; Matthew W. Vaughn; Yukinobu Nakaseko; W. Richard McCombie; Mitsuhiro Yanagida; Robert A. Martienssen
Fission yeast is an important model for epigenetic studies due to the ease with which genetic mutants can be isolated. However, it can be difficult to complement epigenetic phenotypes with genomic libraries in order to identify the genes responsible. This is because epigenetic phenotypes are typically unstable, and can prohibit complementation if silencing cannot be reestablished. Here we have resequenced the fission yeast genome following mutagenesis to readily identify a novel mutant involved in heterochromatic silencing. Candidate genes were identified as functional single base changes linked to the mutation, which were then reconstituted in a wild-type strain to recapitulate the mutant phenotype. By this procedure we identified a weak allele of ubc4, which encodes an essential E2 ubiquitin ligase, as responsible for the swi*603 mutant phenotype. In combination with a large collection of mutants and suppressor plasmids, next-generation genomic resequencing promises to dramatically enhance the power of yeast genetics, permitting the isolation of subtle alleles of essential genes, alleles with quantitative effects, and enhancers and suppressors of heterochromatic silencing.
Chromosome Research | 1999
Richard Saffery; Elizabeth D. Earle; Danielle V. Irvine; Paul Kalitsis; K.H.A. Choo
The chicken genome comprises 78 chromosomes which include several macrochromosomes and many microchromosomes. Very little information is currently available concerning chicken centromere structure and function and it is unclear if the two types of chromosomes share a common centromere mechanism or whether this mechanism resembles those in other species. Immunofluorescence studies using antibodies to mammalian constitutive centromere proteins CENP-A, CENP-B, and CENP-C and the passenger proteins CENP-E, and CENP-F revealed the presence of each of these proteins at the centromeres of both macro- and microchromsomes. CENP-A, CENP-B, and CENP-E levels showed variability between metaphase centromeres while CENP-C and CENP-F levels were relatively constant. These results suggest a common centromere mechanism for both types of chromosomes as well as indicating a high degree of conservation of individual proteins between widely divergent vertebrate classes and an overall conservation of centromere function throughout vertebrate evolution.
American Journal of Medical Genetics | 1999
Lucille Voullaire; Richard Saffery; Julie Davies; Elizabeth D. Earle; Paul Kalitsis; Howard R. Slater; Danielle V. Irvine; K.H. Andy Choo
Normal human centromeres contain large tandem arrays of alpha-satellite DNA of varying composition and complexity. However, a new class of mitotically stable marker chromosomes which contain neocentromeres formed from genomic regions previously devoid of centromere activity was described recently. These neocentromeres are fully functional yet lack the repeat sequences traditionally associated with normal centromere function. We report here a supernumerary marker chromosome derived from the short arm of chromosome 20 in a patient with manifestations of dup(20p) syndrome. Detailed cytogenetic, FISH, and polymorphic microsatellite analyses indicate the de novo formation of the marker chromosome during meiosis or early postzygotically, involving an initial chromosome breakage at 20p11.2, followed by an inverted duplication of the distal 20p segment due to rejoining of sister chromatids and the activation of a neocentromere within 20p12. This inv dup(20p) marker chromosome lacks detectable centromeric alpha-satellite and pericentric satellite III sequences, or centromere protein CENP-B. Functional activity of the neocentromere is evidenced by its association with 5 different, functionally critical centromere proteins: CENP-A, CENP-C, CENP-E, CENP-F, and INCENP. Formation of a neocentromere on human chromosome 20 has not been reported previously and in this context represents a new mechanism for the origin of dup(20p) syndrome.