Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danijela Krstić is active.

Publication


Featured researches published by Danijela Krstić.


Current Neuropharmacology | 2013

Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

Mirjana Čolović; Danijela Krstić; Tamara Lazarević-Pašti; Aleksandra M. Bondžić; Vesna Vasić

Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.


Neurosurgery | 2008

Targeting the alpha 1 subunit of the sodium pump to combat glioblastoma cells

Florence Lefranc; Tatjana Mijatovic; Yasuko Kondo; Sébastien Sauvage; Isabelle Roland; Olivier Debeir; Danijela Krstić; Vesna Vasić; Philippe Gailly; Seiji Kondo; Gustavo Blanco; Robert Kiss

OBJECTIVEIon transporters play pivotal roles in cancer cell migration in general and in glioblastomas (GBMs) in particular. However, the specific role of Na+/K+-ATPase (the sodium pump) and, in particular, its α1 subunit, has remained unexplored in GBMs. MATERIALS AND METHODSThe expression of Na+/K+-ATPase α1 in GBM clinical samples, normal brain tissue, and a human GBM cell line has been investigated. Using the novel cardenolide UNBS1450 (Unibioscreen, Brussels, Belgium), which is a ligand of the sodium pump, we have characterized the effects of inhibiting Na+/K+-ATPase α1 in human GBM cells with respect to cell proliferation; morphology; impact on intracellular Na+, Ca2+, and adenosine triphosphate; and changes in the actin cytoskeleton. We have investigated the mechanism by which UNBS1450 overcomes the apoptosis resistance of GBMs and determined its anti-tumor effects in comparative studies in vitro in GBM cell viability assays and in vivo using an orthotopic human GBM xenograft model. RESULTSOverall, the α1 subunit of Na+/K+-ATPase is highly expressed in a majority of glioblastomas compared with normal brain tissues, and by binding to this subunit in human U373-MG GBM cells, UNBS1450 impairs cell proliferation and migration via an intracellular adenosine triphosphate decrease-mediated disorganization of the actin cytoskeleton and cytotoxic proautophagic effects. UNBS1450 also significantly increases the in vivo survival of mice orthotopically grafted with U373-MG GBM cells. CONCLUSIONInhibition of the Na+/K+-ATPase α1 subunit in human GBM cells impairs both cell migration and cell proliferation.


Toxicology Letters | 2010

Toxic effects of diazinon and its photodegradation products

Mirjana Čolović; Danijela Krstić; Sandra Petrović; Andreja Leskovac; Gordana Joksić; Jasmina Savić; Polonca Trebše; Vesna Vasić

The toxic effects of diazinon and its irradiated solutions were investigated using cultivated human blood cells (lymphocytes and erythrocytes) and skin fibroblasts. Ultra Performance Liquid Chromatography (UPLC)-UV/VIS system was used to monitor the disappearance of starting diazinon during 115-min photodegradation and formation of its by-products (diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol (IMP)) as a function of time. Dose-dependent AChE and Na(+)/K(+)-ATPase inhibition by diazinon was obtained for all investigated cells. Calculated IC(50) (72 h) values, in M, were: 7.5x10(-6)/3.4x10(-5), 8.7x10(-5)/6.6x10(-5), and 3.0x10(-5)/4.6x10(-5) for fibroblast, erythrocyte and lymphocyte AChE/Na(+)/K(+)-ATPase, respectively. Results obtained for reference commercially purified target enzymes indicate similar sensitivity of AChE towards diazinon (IC(50) (20 min)-7.8x10(-5)M), while diazinon concentrations below 10mM did not noticeably affect Na(+)/K(+)-ATPase activity. Besides, diazinon and IMP induced increasing incidence of micronuclei (via clastogenic mode of action) in a dose-dependent manner up to 2x10(-6)M and significant inhibition of cell proliferation and increased level of malondialdehyde at all investigated concentrations. Although after 15-min diazinon irradiation formed products do not affect purified commercial enzymes activities, inhibitory effect of irradiated solutions on cell enzymes increased as a function of time exposure to UV light and resulted in significant reduction of AChE (up to 28-45%) and Na(+)/K(+)-ATPase (up to 35-40%) at the end of irradiation period. Moreover, photodegradation treatment strengthened prooxidative properties of diazinon as well as its potency to induce cytogenetic damage.


Molecular and Cellular Biochemistry | 2009

The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration

Aleksandra Rašić-Marković; Olivera Stanojlovic; D. Hrnčić; Danijela Krstić; Mirjana Čolović; V. Šušić; Tatjana Radosavljevic; Dragan Djuric

Hyperhomocysteinemia is associated with various pathologies including cardiovascular disease, stroke, and cognitive dysfunctions. Systemic administration of homocysteine can trigger seizures in animals, and patients with homocystinuria suffer from epileptic seizures. Available data suggest that homocysteine can be harmful to human cells because of its metabolic conversion to homocysteine thiolactone, a reactive thioester. A number of reports have demonstrated a reduction of Na+/K+-ATPase activity in cerebral ischemia, epilepsy and neurodegeneration possibly associated with excitotoxic mechanisms. The aim of this study was to examine the in vivo effects of d,l-homocysteine and d,l-homocysteine thiolactone on Na+/K+- and Mg2+-ATPase activities in erythrocyte (RBC), brain cortex, hippocampus, and brain stem of adult male rats. Our results demonstrate a moderate inhibition of rat hippocampal Na+/K+-ATPase activity by d,l-homocysteine, which however expressed no effect on the activity of this enzyme in the cortex and brain stem. In contrast,d,l-homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex, hippocampus and brain stem of rats. RBC Na+/K+-ATPase and Mg2+-ATPase activities were not affected by d,l-homocysteine, while d,l-homocysteine thiolactone inhibited only Na+/K+-ATPase activity. This study results show that homocysteine thiolactone significantly inhibits Na+/K+-ATPase activity in the cortex, hippocampus, and brain stem, which may contribute at least in part to the understanding of excitotoxic and convulsive properties of this substance.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2004

Effects of Digoxin and Gitoxin on the Enzymatic Activity and Kinetic Parameters of Na+/K+-ATPase

Danijela Krstić; Katarina Krinulović; Vera Spasojević-Tišma; Gordana Joksić; Tatjana Momić; Vesna Vasić

Inhibition of Na+/K+-ATPase activity from human erythrocyte membranes and commercial porcine cerebral cortex by in vitro single and simultaneous exposure to digoxin and gitoxin was investigated to elucidate the difference in the mechanism of the enzyme inhibition by structurally different cardiac glycosides. The drugs exerted a biphasic dose-dependent inhibitory effect on the enzyme activity in both tissues, supporting the existence of two sensitive Na+/K+-ATPase isoforms. The IC50 values for the low and high affinity isoforms were calculated from the inhibition curves using mathematical analysis. The Hill coefficient (n) fulfilled the relationship 1<n<3, suggesting cooperative binding of inhibitors to the enzyme. Kinetic analysis showed that digoxin and gitoxin inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction. Both the isoforms were always more sensitive to gitoxin. The erythrocyte enzyme was more sensitive to the inhibitors in the range of low concentrations but the commercial cerebral cortex enzyme exerted a higher sensitivity in high inhibitors affinity concentration range. By simultaneous exposure of the enzyme to digoxin and gitoxin in combinations a synergistic effect was achieved by low inhibitor concentrations. An antagonistic effect was obtained with erythrocyte membrane enzyme at high inhibitors concentration.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2008

Inhibition of AChE by malathion and some structurally similar compounds

Danijela Krstić; Mojca Bavcon Kralj; Katarina Krinulović; Polonca Trebs; Vesna Vasić

Inhibition of bovine erythrocyte acetylcholinesterase (free and immobilized on controlled pore glass) by separate and simultaneous exposure to malathion and malathion transformation products which are generally formed during storage or through natural or photochemical degradation was investigated. Increasing concentrations of malathion, its oxidation product malaoxon, and its isomerisation product isomalathion inhibited free and immobilized AChE in a concentration-dependent manner. KI, the dissociation constant for the initial reversible enzyme inhibitor-complex, and k3, the first order rate constant for the conversion of the reversible complex into the irreversibly inhibited enzyme, were determined from the progressive development of inhibition produced by reaction of native AChE with malathion, malaoxon and isomalathion. KI values of 1.3 × 10− 4 M− 1, 5.6 × 10− 6 M− 1 and 7.2 × 10− 6 M− 1 were obtained for malathion, malaoxon and isomalathion, respectively. The IC50 values for free/immobilized AChE, (3.7 ± 0.2) × 10− 4 M/(1.6 ± 0.1) × 10− 4, (2.4 ± 0.3) × 10− 6/(3.4 ± 0.1) × 10− 6 M and (3.2 ± 0.3) × 10− 6 M/(2.7 ± 0.2) × 10− 6 M, were obtained from the inhibition curves induced by malathion, malaoxon and isomalathion, respectively. However, the products formed due to photoinduced degradation, phosphorodithioic O,O,S-trimethyl ester and O,O-dimethyl thiophosphate, did not noticeably affect enzymatic activity, while diethyl maleate inhibited AChE activity at concentrations > 10 mM. Inhibition of acetylcholinesterase increased with the time of exposure to malathion and its inhibiting by-products within the interval from 0 to 5 minutes. Through simultaneous exposure of the enzyme to malaoxon and isomalathion, an additive effect was achieved for lower concentrations of the inhibitors (in the presence of malaoxon/isomalathion at concentrations 2 × 10− 7 M/2 × 10− 7 M, 2 × 10− 7 M/3 × 10− 7 M and 2 × 10− 7 M/4.5 × 10− 7 M), while an antagonistic effect was obtained for all higher concentrations of inhibitors. The presence of a non-inhibitory degradation product (phosphorodithioic O,O,S-trimethyl ester) did not affect the inhibition efficiencies of the malathion by-products, malaoxon and isomalathion.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2005

Inhibition of Na+/K+-ATPase and Mg2+-ATPase by metal ions and prevention and recovery of inhibited activities by chelators

Danijela Krstić; Katarina Krinulović; Vesna Vasić

Kinetics and inhibition of Na+/K+-ATPase and Mg2+-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu2+, Zn2+, Fe2+ and.Co2+) and heavy metals (Hg2+and Pb2+) ions were studied. All investigated metals produced a larger maximum inhibition of Na+/K+-ATPase than Mg2+-ATPase activity. The free concentrations of the key species (inhibitor, MgATP2 − , MeATP2 − ) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu2+/Fe2+ or Hg2+/Pb2+caused additive inhibition, while Cu2+/Zn2+ or Fe2+/Zn2+ inhibited Na+/K+-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu2+/Fe2+ or Cu2+/Zn2+ inhibited Mg2+-ATPase activity synergistically, while Hg2+/Pb2+ or Fe2+/Zn2+ induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na+/K+-ATPase activity by reducing the maximum velocities (Vmax) rather than the apparent affinity (Km) for substrate MgATP2-, implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg2+-ATPase activity by Zn2+, Fe2+ and Co2+ as well as kinetic analysis indicated two distinct Mg2+-ATPase subtypes activated in the presence of low and high MgATP2 − concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na+/K+-ATPase with various potencies. Furthermore, these ligands also reversed Na+/K+-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg2+-induced inhibition was not obtained.


Bioorganic & Medicinal Chemistry | 2011

Inhibition of rat synaptic membrane Na+/K+-ATPase and ecto-nucleoside triphosphate diphosphohydrolases by 12-tungstosilicic and 12-tungstophosphoric acid

Mirjana Čolović; Danica Bajuk-Bogdanović; Nataša Avramović; Ivanka Holclajtner-Antunović; Nada Bošnjaković-Pavlović; Vesna Vasić; Danijela Krstić

The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors.


Sensors | 2008

Na + ,K + -ATPase as the Target Enzyme for Organic and Inorganic Compounds

Vesna Vasić; Tatjana Momić; Marijana Petković; Danijela Krstić

This paper gives an overview of the literature data concerning specific and non specific inhibitors of Na+,K+-ATPase receptor. The immobilization approaches developed to improve the rather low time and temperature stability of Na+,K+-ATPase, as well to preserve the enzyme properties were overviewed. The functional immobilization of Na+,K+-ATPase receptor as the target, with preservation of the full functional protein activity and access of various substances to an optimum number of binding sites under controlled conditions in the combination with high sensitive technology for the detection of enzyme activity is the basis for application of this enzyme in medical, pharmaceutical and environmental research.


Toxicology Letters | 2015

In vitro evaluation of neurotoxicity potential and oxidative stress responses of diazinon and its degradation products in rat brain synaptosomes.

Mirjana Čolović; Vesna Vasić; Nataša Avramović; Milan M. Gajić; Dragan M. Djuric; Danijela Krstić

Although primary toxic action of organophosphorous insecticides is associated with acetylcholinesterase inhibition, later studies suggest that oxidative stress may be responsible for induced organophosphates toxicity. These studies mostly include thio forms, while the effects of their metabolites/degradation products have been less investigated. Therefore, this paper studies the toxic effects of diazinon degradation products, diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol, and compares them with the toxic potential of the parent compound. The toxicity induced by various concentrations of the investigated compounds was in vitro evaluated by the activities of acetylcholinesterase, ATPases, antioxidant defense enzymes and lactate dehydrogenase, and malondialdehyde level in rat brain synaptosomes. Diazinon inhibited acetylcholinesterase and Na(+)/K(+)-ATPase in dose-dependent manner, while the inhibition of ecto-ATPase activity was less than 15% at all investigated concentrations. It did not demonstrate noteworthy prooxidative properties causing increase (up to 10%) in antioxidant enzymes activity and malondialdehyde level, as a marker of lipid peroxidation. Diazinon oxidation product, diazoxon was found as the most toxic investigated compound. Beside the expected strong inhibitory effect on acetylcholinesterase, it induced dose-dependent and almost complete inhibition of Na(+)/K(+)-ATPase and ecto-ATPase at the highest investigated concentration (0.1mM). Increasing diazoxon concentrations activated catalase (up to 30%), superoxide dismutase (up to 50%), glutathione peroxidase (up to 30%), and significantly increased malondialdehyde level (up to 50%). The investigated hydrolysis product of diazinon, 2-isopropyl-6-methyl-4-pyrimidinol did not remarkably alter the activities of acetylcholinesterase, Na(+)/K(+)-ATPase, catalase, glutathione peroxidase and lipid peroxidation level (up to about 10%). Although this diazinon metabolite has been known as non toxic, it induced superoxide dismutase stimulation up to 30%. Finally, even high concentrations of both diazinon and its metabolites did noticeably affect lactate dehydrogenase activity as a marker of synaptosomal integrity. The changes in investigated biochemical parameters in rat brain synaptosomes could serve as indicators of toxicity due to the exposure to thio organophosphates and/or their break-down products.

Collaboration


Dive into the Danijela Krstić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Hrnčić

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge