Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danijela Mišić is active.

Publication


Featured researches published by Danijela Mišić.


Food and Chemical Toxicology | 2013

Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats

Vladimir Mihailović; Mirjana Mihailović; Aleksandra Uskoković; Jelena Arambašić; Danijela Mišić; Vesna Stanković; Jelena Katanić; Milan Mladenović; Slavica Solujić; Sanja Matić

This study is an attempt to evaluate the hepatoprotective activity of Gentiana asclepiadea L. against carbon tetrachloride-induced liver injury in rats. Methanol extracts of aerial parts (GAA) and roots (GAR) of G. asclepiadea at doses of 100, 200, and 400mg/ kg b.w. were orally administered to Wistar rats once daily for 7 days before they were treated with CCl(4). The hepatoprotective activity of the extracts in this study was compared with the reference drug silymarin. In CCl(4) treated animals, GAA and GAR significantly decreased levels of serum transaminases, alkaline phosphatase and total bilirubin, and increased the level of total protein. Treatment with the extracts resulted in a significant increase in the levels of catalase, superoxide dismutase and reduced glutathione, accompanied with a marked reduction in the levels of malondialdehyde, as compared to CCl(4) treated group. The histopathological studies confirmed protective effects of extracts against CCl(4)-induced liver injuries. No genotoxicity was observed in liver cells after GAA treatment, while GAR showed only slight genotoxic effects by comet assay. Phytochemical analysis revealed the presence of sweroside, swertiamarin and gentiopicrin in high concentrations in both extracts. It could be concluded that the use of G. asclepiadea extracts in the treatment of chemical-induced hepatotoxicity.


Food Chemistry | 2014

Centauries as underestimated food additives: antioxidant and antimicrobial potential.

Branislav Šiler; Suzana Živković; Tijana Banjanac; Jelena Cvetkovic; Jasmina Nestorović Živković; Ana Ćirić; Marina Soković; Danijela Mišić

Methanol extracts of aerial parts and roots of five centaury species (Centaurium erythraea, C. tenuiflorum, C. littorale ssp. uliginosum, C. pulchellum, and Schenkia spicata) were analysed for their main secondary metabolites: secoiridoid glycosides, a group of monoterpenoid compounds, and phenolics (xanthones and flavonoids), and further investigated for antioxidant capacity and antimicrobial activity. The results of ABTS, DPPH, and FRAP assays showed that above ground parts generally displayed up to 13 times higher antioxidant activity compared to roots, which should be related to higher phenolics content, especially flavonoids, in green plant organs. Secoiridoid glycosides showed no antioxidant activity. All the tested extracts demonstrated appreciative antibacterial (0.05-0.5 mg ml(-1)) and strong antifungal activity (0.1-0.6 mg ml(-1)). Our results imply that above ground parts of all centaury species studied, could be recommended for human usage as a rich source of natural antioxidants and also in food industry as strong antimicrobial agents for food preservation.


Phytochemical Analysis | 2015

Simultaneous UHPLC/DAD/(+/−)HESI–MS/MS Analysis of Phenolic Acids and Nepetalactones in Methanol Extracts of Nepeta Species: A Possible Application in Chemotaxonomic Studies

Danijela Mišić; Branislav Šiler; Uroš Gašić; Stevan Avramov; Suzana Živković; Jasmina Nestorović Živković; Milica Milutinović; Živoslav Tešić

INTRODUCTION Nepeta species contain a variety of secondary metabolites, including iridoid monoterpenes - nepetalactones and phenolic acids - that are considered the main bioactive constituents. This work represents the first attempt to comparatively explore variations in these two major groups of secondary metabolites within the genus. OBJECTIVE To develop an efficient analytical methodology for simultaneous analysis of nepetalactones and phenolic acids in methanol extracts of selected Nepeta species, and to evaluate its potential application in chemotaxonomic studies. MATERIAL AND METHODS A UHPLC combined with linear-trap quadrupole (LTQ) orbitrap MS method was used to characterise chemical diversity and complexity of phenolics among 12 selected Nepeta species. A targeted metabolomic approach using UHPLC coupled to a diode array detector (DAD) and combined with (+/-) heated electrospray ionisation (HESI) MS/MS was developed and validated for quantitative analysis of six hydroxycinnamic acid derivatives and four nepetalactones. RESULTS Phenolic profiling provided a valuable database of bioactive compounds in the plant group studied, including phenolic acids (hydroxybenzoic and hydroxycinnamic acids) and flavonoids (flavones, flavonols and flavanones). Principal component analysis and cluster analysis suggested the applicability of 10 targeted compounds as chemomarkers for chemotaxonomic studies. Pearsons correlation analysis revealed significant positive correlations between metabolites involved in different biosynthetic pathways (phenylpropanoid or monoterpenoid). CONCLUSION The described targeted metabolomic approach proved to be highly beneficial in designing a phytochemical overview of the genus Nepeta, and might have applications in further clarification of phylogenetic relations. Furthermore, it has the potential to be implemented in a routine quality control of plant material and herbal preparations.


Fitoterapia | 2010

Nepetalactone content in shoot cultures of three endemic Nepeta species and the evaluation of their antimicrobial activity.

Jasmina Nestorović; Danijela Mišić; Branislav Šiler; Marina Soković; Jasmina Glamočlija; Ana Ćirić; Vuk Maksimović; Dragoljub Grubišić

Rapid micropropagation of Nepeta rtanjensis, N. sibirica and N. nervosa was performed. Qualitative and quantitative nepetalactone content in methanol extracts of in vitro grown plants was analysed by reverse-phase HPLC coupled with UV and MS detection. Only trans,cis-nepetalactone was detected in shoots of N. rtanjensis, while cis,trans-nepetalactone stereoisomer was present in N. sibirica. No nepetalactone was observed in shoots of N. nervosa. The antimicrobial activity of methanol extracts, against eight bacterial and eight fungal species, was evaluated. All the tested extracts showed significant antibacterial and strong antifungal activity. However, N. rtanjensis extract exhibited the best antimicrobial potential.


Plant Molecular Biology Reporter | 2013

Reverse Transcription of 18S rRNA with Poly(dT)18 and Other Homopolymers

Milica Bogdanović; Milan Dragićević; Nikola Tanic; Slađana Todorović; Danijela Mišić; Suzana Živković; Alain Tissier; Ana Simonović

Ribosomal 18S RNA is widely used as a housekeeping gene in expression studies, including end-point PCR, Northern analysis, and real-time experiments. However, there are two disadvantages and two points of error introduction in using 18S rRNA as a reference gene. First, 18S has no poly(A) tail, so it is commonly reverse transcribed with specific primers or random hexamers, independently from poly(dT)-primed transcripts. Secondly, due to its abundance, the 18S cDNA must be extensively diluted to be comparable to the tested genes. In this study, 18S rRNA from five taxonomically diverse plant species, including Physcomitrella patens, Adiantum capillus-veneris, Centaurium erythraea, Arabidopsis thaliana, and Zea mays, was successfully reverse transcribed (RT) using poly(dT)18. As all other homopolymers, including poly(dA)18, poly(dC)18, and poly(dG)18, could serve as RT primers, it was concluded that homopolymers anneal by mispriming at the sites of complementary homopolymeric runs or segments rich in complementary base. Poly(dC)18 was the most efficient as RT primer, and the only one which interfered with subsequent PCR, giving species-specific pattern of products. Poly(dT)-primed RT reactions were less efficient in comparison to specific primer or random hexamer-primed reactions. Homopolymeric priming of 18S in RT reactions is general in terms of RNA origin and the method of RNA isolation and is possibly applicable to other tailless housekeeping genes.


Journal of Plant Physiology | 2012

Sugars and acid invertase mediate the physiological response of Schenkia spicata root cultures to salt stress

Danijela Mišić; Milan Dragićević; Branislav Šiler; Jasmina Nestorović Živković; Vuk Maksimović; Ivana Momčilović; Miroslav Nikolic

A heterotrophic model system was established in our studies in order to differentiate the effect of high salt concentrations in external medium on growth and sugar metabolism in roots from the effect of reduced sugar availability resulting from decreased photosynthesis under salinity. Soluble sugar content and the activity of acid invertase in root cultures of salt-tolerant (ST) and salt-sensitive (SS) Schenkia spicata (L.) Mansion genotypes were investigated during exposure to different NaCl concentrations (0-200 mM). Their response to severe salinity was characterized by a metabolic adjustment that led to the accumulation of sucrose (Suc) in root tissues. There was clear evidence that cell wall invertase (CW-Inv) is the major contributor to the Suc/hexose ratio in roots during exposure to elevated salinity. The results of CW-Inv activity and immunodetection assays in our study suggest that the regulation of CW-Inv expression is most likely achieved in a salt stress dependent manner. Also, NaCl modulated soluble acid invertase (SA-Inv) expression differentially in SS and ST genotypes of S. spicata. Regardless of the salt treatment, genotype, or the amount of enzyme, SA-Inv activity was generally low, indicating regulation at the posttranslational level. The results suggest no direct role of SA-Inv in the regulation of the root tissue carbohydrate pool and therefore in the control of the availability of glucose and fructose for the primary metabolism and/or osmotic adjustment in the present heterotrophic model system.


Excli Journal | 2013

Chemical composition, antioxidant and antigenotoxic activities of different fractions of Gentiana asclepiadea L. roots extract.

Vladimir Mihailović; Sanja Matić; Danijela Mišić; Slavica Solujić; Snežana Stanić; Jelena Katanić; Milan Mladenović; Nevena Stanković

The aim of this study was to evaluate the antioxidant and antigenotoxic activities of chloroform, ethyl acetate and n-butanol fractions obtained from Gentiana asclepiadea L. roots methanolic extract. The main secondary metabolites sweroside, swertiamarin and gentiopicrine were quantified in G. asclepiadea root extracts using HPLC-DAD analysis. Amount of total phenols, flavonoids, flavonols and gallotannins was also determined. The antigenotoxic potential of extracts from roots of G. asclepiadea was assessed using the standard in vivo procedure for the detection of sex linked recessive lethal mutations in Drosophila melanogaster males treated with ethyl methanesulfonate (EMS). The results showed that the most abundant secoiridoid in G. asclepiadea roots was gentiopicrine and its content in the n-butanol fraction (442.89 mg/g) was the highest. Among all extracts, ethyl acetate fraction showed the highest antioxidant activity, as well as total phenolics (146.64 GAE/g), flavonoids (44.62 RUE/g), flavonols (22.71 RUE/g) and gallotannins (0.99 mg GAE/g) content. All the fractions showed antioxidant activity using in vitro model systems and the results have been correlated with total phenolics, flavonoids, flavonols and gallotannins content. In addition to antioxidant activity, G. asclepiadea root extract fractions possess an antigenotoxic effect against DNA damage induced by alkylation with EMS. The antioxidant activity exhibited by G. asclepiadea depended on the phenolic compounds content of the tested extracts, while there was no significant difference in the antigenotoxic potential between fractions.


Journal of Ethnopharmacology | 2017

Centaurium erythraea methanol extract protects red blood cells from oxidative damage in streptozotocin-induced diabetic rats

Miloš Đorđević; Mirjana Mihailović; Jelena Jovanovic; Nevena Grdović; Aleksandra Uskoković; Anja Tolić; Marija Sinadinović; Jovana Rajić; Danijela Mišić; Branislav Šiler; Goran Poznanović; Melita Vidaković; Svetlana Dinić

ETHNOPHARMACOLOGICAL RELEVANCE Centaurium erythraea Rafn (CE) is a traditional medicinal herb in Serbia with antidiabetic, digestive, antipyretic and antiflatulent effects AIM OF THE STUDY: To investigate the potential protective effects of the methanol extract of the aerial parts of CE against glyco-oxidative stress in red blood cells (RBCs) in rats with experimentally induced diabetes. MATERIAL AND METHODS Diabetes was induced in Wistar rats by intraperitoneal (i.p.) injection of multiple low-dose streptozotocin (STZ) (40mg/kg, for five consecutive days), with the 1st day after the last STZ injection taken as the day of diabetes onset. The methanol extract of CE (100mg/kg) was administered orally and daily, two weeks before the first STZ injection, during the 5-day treatment with STZ, and for four weeks after the STZ injections (pre-treated group) or for four weeks after diabetes onset (post-treated group). The effect of CE extract administration on the redox status of RBCs was evaluated by assessing lipid peroxidation, the ratio of reduced/oxidized glutathione (GSH/GSSG), the level of S-glutathionylated proteins (GSSP) and the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in RBCs four weeks after diabetes onset. The major biochemical parameters of diabetes, protein glycation/glycosylation of erythrocytes and parameters which correlate with their aggregation and deformability were also evaluated. RESULTS Daily application of CE extract to STZ-induced diabetic rats provided important antidiabetic effects, observed in both pre-treated and post-treated groups of diabetic rats as elevated serum insulin concentration, reduction of blood glucose and glycated hemoglobin concentrations and an improved lipid profile. Antioxidant effects of CE extract were detected in RBCs of diabetic rats and observed as decreased lipid peroxidation and ameliorated oxidative damage as a result of increased SOD, CAT and GR activities, an improved GSH/GSSG ratio and reduced GSSP levels. Moreover, the CE extract protected RBC proteins from hyperglycemia-induced damage by reducing non-enzymatic glycation and enzymatic glycosylation processes. CE extract was more effective when applied before diabetes induction (pre-treated group). CONCLUSIONS The results of this study show that the Centaurium erythraea methanol extract protects RBCs in diabetic animals from oxidative damage. They provide additional support for the application of this traditionally used plant in diabetes management.


Israel Journal of Plant Sciences | 2005

Influence of carbohydrate source on Nepeta rtanjensis growth, morphogenesis, and nepetalactone production in vitro

Danijela Mišić; Vuk Maksimović; Sladjana Todorovic; Dragoljub Grubišić; Radomir Konjević

A wide range of sucrose, fructose, and glucose levels in culture media was tested in vitro in order to determine those that provide optimum growth, morphogenesis, and the production of secondary metabolites in Nepeta rtanjensis Diklic and Milojevic shoots. The effect of different concentrations of the carbohydrates in culture media on the internal carbohydrate status of N. rtanjensis shoots was also determined. Our results show that in vitro growth and development of N. rtanjensis, as well as nepetalactone accumulation, are significantly affected by both the type of carbohydrate and its concentration in the culture medium. Glucose proved to be the most efficient carbon and energy source.


Journal of Medical Entomology | 2017

Chemosensory Responses to the Repellent Nepeta Essential Oil and Its Major Component Nepetalactone by Aedes aegypti (Diptera: Culicidae), a Vector of Zika Virus

Jackson T. Sparks; Jonathan D. Bohbot; Mihailo S. Ristić; Danijela Mišić; Marijana Skorić; Autar Mattoo; Joseph C. Dickens

Abstract Nepeta essential oil (Neo; catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti (L.), an important vector of Zika virus, were poorly understood. Here we show that Neo volatiles activate olfactory receptor neurons within the basiconic sensilla on the maxillary palps of female Ae. aegypti. A gustatory receptor neuron sensitive to the feeding deterrent quinine and housed within sensilla on the labella of females was activated by both Neo and nepetalactone. Activity of a second gustatory receptor neuron sensitive to the feeding stimulant sucrose was suppressed by both repellents. Our results provide neural pathways for the reported spatial repellency and feeding deterrence of these repellents. A better understanding of the neural input through which female mosquitoes make decisions to feed will facilitate design of new repellents and management strategies involving their use.

Collaboration


Dive into the Danijela Mišić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge