Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danislav S. Spassov is active.

Publication


Featured researches published by Danislav S. Spassov.


Clinical Cancer Research | 2009

Phosphorylation of the SRC epithelial substrate Trask is tightly regulated in normal epithelia but widespread in many human epithelial cancers.

Ching Hang Wong; Frederick L. Baehner; Danislav S. Spassov; Deepika Ahuja; Donghui Wang; Byron Hann; Jimmy Blair; Kevan M. Shokat; Alana L. Welm; Mark M. Moasser

Purpose: The frequently elevated activities of the c-src and c-yes products in human epithelial tumors suggest that these activated tyrosine kinases have tumorigenic functions analogous to the v-src and v-yes oncogene products. Studies of v-src–transformed fibroblasts have identified many of the effectors of this potent oncogene; however, because c-src and c-yes lack the mutational and promiscuous activities of their retroviral oncogene homologues, their presumptive tumorigenic functions in human epithelial tumors are more subtle, less well-defined, and await identification of possible effectors more directly relevant to epithelial cells. Experimental Design: We recently identified a transmembrane glycoprotein named Trask that is expressed in epithelial tissues but not fibroblasts and is phosphorylated by SRC kinases in mitotic epithelial cells. In this study, we have surveyed the expression and phosphorylation of Trask in many human epithelial cancer cell lines and surgical tissues and tumors. Results: Trask is widely expressed in human epithelial tissues, but its phosphorylation is tightly regulated and restricted to detached mitotic cells or cells undergoing physiologic shedding. However, abberant Trask phosphorylation is seen in many epithelial tumors from all stages including preinvasive, invasive, and metastatic tumors. Trask phosphorylation requires SRC kinases, and is also aberrantly hyperphosphorylated in the SRC-activated PyMT mouse epithelial tumors and dephosphorylated by the SRC inhibitor treatment of these tumors. Conclusions: The widespread phosphorylation of Trask in many human epithlelial cancers identifies a new potential effector of SRC kinases in human epithelial tumorigenesis.


American Journal of Pathology | 2009

The Transmembrane src Substrate Trask Is an Epithelial Protein that Signals during Anchorage Deprivation

Danislav S. Spassov; Frederick L. Baehner; Ching Hang Wong; Stephen McDonough; Mark M. Moasser

The roles of epithelial cells encompass both cellular- and tissue-level functions that involve numerous cell-cell and cell-matrix interactions, which ultimately mediate the highly structured arrangement of cells on a basement membrane. Although maintaining this basic structure is critical for preserving tissue integrity, plasticity in epithelial cell behavior is also critical for processes such as cell migration during development or wound repair, mitotic cell detachment, and physiological shedding. The mechanisms that mediate epithelial cell plasticity are only beginning to be understood. We previously identified Trask, a transmembrane protein that is phosphorylated by src kinases during mitosis. In this study, we report that the phosphorylation of Trask is associated with anchorage loss in epithelial cells. Phosphorylation of Trask is seen during the cell-detachment phase of mitosis, in experimentally induced interphase detachment, and during cell migration in experimental epithelial models. An analysis of human tissues shows that Trask is widely expressed in many epithelial tissues but not in most tissues of mesenchymal origin, except for a subset of early hematopoietic cells. Trask is not phosphorylated in epithelial tissues in vivo; however, its phosphorylation is seen in epithelial cells undergoing mitosis or physiological shedding. Trask is a novel epithelial membrane protein that is phosphorylated by src kinases when epithelial cells disengage from their tissue framework, identifying an important new regulator of epithelial tissue dynamics.


Molecular and Cellular Biology | 2011

Phosphorylation of Trask by Src kinases inhibits integrin clustering and functions in exclusion with focal adhesion signaling.

Danislav S. Spassov; Ching Hang Wong; Natalia Sergina; Deepika Ahuja; Mike Fried; Dean Sheppard; Mark M. Moasser

ABSTRACT Trask is a recently described transmembrane substrate of Src kinases whose expression and phosphorylation has been correlated with the biology of some cancers. Little is known about the molecular functions of Trask, although its phosphorylation has been associated with cell adhesion. We have studied the effects of Trask phosphorylation on cell adhesion, integrin activation, clustering, and focal adhesion signaling. The small hairpin RNA (shRNA) knockdown of Trask results in increased cell adhesiveness and a failure to properly inactivate focal adhesion signaling, even in the unanchored state. On the contrary, the experimentally induced phosphorylation of Trask results in the inhibition of cell adhesion and inhibition of focal adhesion signaling. This is mediated through the inhibition of integrin clustering without affecting integrin affinity state or ligand binding activity. Furthermore, Trask signaling and focal adhesion signaling inactivate each other and signal in exclusion with each other, constituting a switch that underlies cell anchorage state. These data provide considerable insight into how Trask functions to regulate cell adhesion and reveal a novel pathway through which Src kinases can oppose integrin-mediated cell adhesion.


Cancer Research | 2013

Trask Loss Enhances Tumorigenic Growth by Liberating Integrin Signaling and Growth Factor Receptor Cross-Talk in Unanchored Cells

Danislav S. Spassov; Ching Hang Wong; Sunny Y. Wong; Jeremy F. Reiter; Mark M. Moasser

The cell surface glycoprotein Trask/CDCP1 is phosphorylated during anchorage loss in epithelial cells in which it inhibits integrin clustering, outside-in signaling, and cell adhesion. Its role in cancer has been difficult to understand, because of the lack of a discernible pattern in its various alterations in cancer cells. To address this issue, we generated mice lacking Trask function. Mammary tumors driven by the PyMT oncogene and skin tumors driven by the SmoM2 oncogene arose with accelerated kinetics in Trask-deficient mice, establishing a tumor suppressing function for this gene. Mechanistic investigations in mammary tumor cell lines derived from wild-type or Trask-deficient mice revealed a derepression of integrin signaling and an enhancement of integrin-growth factor receptor cross-talk, specifically in unanchored cell states. A similar restrictive link between anchorage and growth in untransformed epithelial cells was observed and disrupted by elimination of Trask. Together our results establish a tumor-suppressing function in Trask that restricts epithelial cell growth to the anchored state.


PLOS ONE | 2011

The Structural Features of Trask That Mediate Its Anti-Adhesive Functions

Danislav S. Spassov; Deepika Ahuja; Ching Hang Wong; Mark M. Moasser

Trask/CDCP1 is a transmembrane protein with a large extracellular and small intracellular domains. The intracellular domain (ICD) undergoes tyrosine phosphorylation by Src kinases during anchorage loss and, when phosphorylated, Trask functions to inhibit cell adhesion. The extracellular domain (ECD) undergoes proteolytic cleavage by serine proteases, although the functional significance of this remains unknown. There is conflicting evidence regarding whether it functions to signal the phosphorylation of the ICD. To better define the structural determinants that mediate the anti-adhesive functions of Trask, we generated a series of deletion mutants of Trask and expressed them in tet-inducible cell models to define the structural elements involved in cell adhesion signaling. We find that the ECD is dispensable for the phosphorylation of the ICD or for the inhibition of cell adhesion. The anti-adhesive functions of Trask are entirely embodied within its ICD and are specifically due to tyrosine phosphorylation of the ICD as this function is completely lost in a phosphorylation-defective tyrosine-phenylalanine mutant. Both full length and cleaved ECDs are fully capable of phosphorylation and undergo phosphorylation during anchorage loss and cleavage is not an upstream signal for ICD phosphorylation. These data establish that the anti-adhesive functions of Trask are mediated entirely through its tyrosine phosphorylation. It remains to be defined what role, if any, the Trask ECD plays in its adhesion functions.


Oncogene | 2012

A tumor suppressing function in the epithelial adhesion protein Trask

Danislav S. Spassov; Ching Hang Wong; Geoffrey Harris; Stephen McDonough; Paul Phojanakong; Donghui Wang; Byron Hann; Alexey V. Bazarov; Paul Yaswen; Elham Khanafshar; Mark M. Moasser

Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immuno-histochemical survey of human cancer specimens, we find that Trask expression is retained, reduced or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression, including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA-induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor-suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers.


Cell Cycle | 2011

Trask phosphorylation defines the reverse mode of a phosphotyrosine signaling switch that underlies cell anchorage state

Danislav S. Spassov; Ching H. Wong; Mark M. Moasser

Phosphotyrosine signaling in anchored epithelial cells constitutes a spacially ordained signaling program that largely functions to promote integrin-linked focal adhesion complexes, serving to secure cell anchorage to matrix and as a bidirectional signaling hub that coordinates the physical state of the cell and its environment with cellular functions including proliferation and survival. Cells release their adhesions during processes such as mitosis, migration, or tumorigenesis, but the fate of signaling through tyrosine phosphorylation in unanchored cells remains poorly understood. In an examination of epithelial cells in the unanchored state, we find abundant phosphotyrosine signaling, largely recommitted to an anti-adhesive function mediated through the Src family phosphorylation of their transmembrane substrate Trask/CDCP1/gp140. Src-Trask phosphorylation inhibits integrin clustering and focal adhesion assembly and signaling, defining an active phosphotyrosine signaling program underlying the unanchored state. Src-Trask signaling and Src-focal adhesion signaling inactivate each other, constituting two opposing modes of phosphotyrosine signaling that define a switch underline cell anchorage state. Src kinases are prominent drivers of both signaling modes, identifying their position at the helm of adhesion signaling capable of specifying anchorage state through substrate selection. These experimental studies along with concurring phylogenetic evidence suggest that phosphorylation on tyrosine is a signaling function fundamentally linked with the regulation of integrins.


Proceedings of the National Academy of Sciences of the United States of America | 2017

CD318 is a ligand for CD6

Gospel Enyindah-Asonye; Yan Li; Jeffrey H. Ruth; Danislav S. Spassov; Katie E. Hebron; Andries Zijlstra; Mark M. Moasser; Benlian Wang; Nora G. Singer; Huadong Cui; Ray A. Ohara; Stephanie M. Rasmussen; David A. Fox; Feng Lin

Significance The CD6 T cell surface glycoprotein regulates T cell activation, and CD6 is a risk gene for autoimmune diseases including multiple sclerosis (MS). Moreover, recent work indicates that CD6 is an attractive target for the development of new therapeutic approaches to autoimmune diseases such as MS. The known ligand of CD6 is CD166 (also termed ALCAM), but CD6–CD166 interactions neither explain CD6-dependent interactions with stromal cell lineages that are critical in organ-targeted autoimmune diseases nor account for effects of CD6-targeted therapeutics in autoimmune diseases. This report definitively establishes CD318 as a second ligand of CD6 and provides evidence for the importance of CD6–CD318 interactions in autoimmune diseases that affect the central nervous system and the synovial lining of joints. It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6–CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.


Oncogene | 2018

Regulation of inside-out β1-integrin activation by CDCP1

Sara Pollan; Fangjin Huang; Jamie M. Sperger; Joshua M. Lang; Colm Morrissey; Anne E. Cress; Chia-Yi Chu; Neil A. Bhowmick; Sungyong You; Michael R. Freeman; Danislav S. Spassov; Mark M. Moasser; William G. Carter; Shakti Ranjan Satapathy; Kavita Shah; Beatrice Knudsen

Tumor metastasis depends on the dynamic regulation of cell adhesion through β1-integrin. The Cub-Domain Containing Protein-1, CDCP1, is a transmembrane glycoprotein which regulates cell adhesion. Overexpression and loss of CDCP1 have been observed in the same cancer types to promote metastatic progression. Here, we demonstrate reduced CDCP1 expression in high-grade, primary prostate cancers, circulating tumor cells and tumor metastases of patients with castrate-resistant prostate cancer. CDCP1 is expressed in epithelial and not mesenchymal cells, and its cell surface and mRNA expression declines upon stimulation with TGFβ1 and epithelial-to-mesenchymal transition. Silencing of CDCP1 in DU145 and PC3 cells resulted in 3.4-fold higher proliferation of non-adherent cells and 4.4-fold greater anchorage independent growth. CDCP1-silenced tumors grew in 100% of mice, compared to 30% growth of CDCP1-expressing tumors. After CDCP1 silencing, cell adhesion and migration diminished 2.1-fold, caused by loss of inside-out activation of β1-integrin. We determined that the loss of CDCP1 reduces CDK5 kinase activity due to the phosphorylation of its regulatory subunit, CDK5R1/p35, by c-SRC on Y234. This generates a binding site for the C2 domain of PKCδ, which in turn phosphorylates CDK5 on T77. The resulting dissociation of the CDK5R1/CDK5 complex abolishes the activity of CDK5. Mutations of CDK5-T77 and CDK5R1-Y234 phosphorylation sites re-establish the CDK5/CDKR1 complex and the inside-out activity of β1-integrin. Altogether, we discovered a new mechanism of regulation of CDK5 through loss of CDCP1, which dynamically regulates β1-integrin in non-adherent cells and which may promote vascular dissemination in patients with advanced prostate cancer.


Cell Reports | 2018

A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src

Danislav S. Spassov; Ana Ruiz-Saenz; Amit Piple; Mark M. Moasser

SUMMARY The mode of regulation of Src kinases has been elucidated by crystallographic studies identifying conserved structured protein modules involved in an orderly set of intramolecular associations and ligand interactions. Despite these detailed insights, much of the complex behavior and diversity in the Src family remains unexplained. A key missing piece is the function of the unstructured N-terminal region. We report here the function of the N-terminal region in binding within a hydrophobic pocket in the kinase domain of a dimerization partner. Dimerization substantially enhances autophosphorylation and phosphorylation of selected substrates, and interfering with dimerization is disruptive to these functions. Dimerization and Y419 phosphorylation are codependent events creating a bistable switch. Given the versatility inherent in this intrinsically disordered region, its multisite phosphorylations, and its divergence within the family, the unique domain likely functions as a central signaling hub overseeing much of the activities and unique functions of Src family kinases.

Collaboration


Dive into the Danislav S. Spassov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepika Ahuja

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice Knudsen

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Byron Hann

University of California

View shared research outputs
Top Co-Authors

Avatar

Colm Morrissey

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Donghui Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Fangjin Huang

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge