Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danny Alexander is active.

Publication


Featured researches published by Danny Alexander.


Nature | 2009

Metabolomic Profiles Delineate Potential Role for Sarcosine in Prostate Cancer Progression

Arun Sreekumar; Laila M. Poisson; Thekkelnaycke M. Rajendiran; Amjad P. Khan; Qi Cao; Jindan Yu; Bharathi Laxman; Rohit Mehra; Robert J. Lonigro; Yong Li; Mukesh K. Nyati; Aarif Ahsan; Shanker Kalyana-Sundaram; Bo Han; Xuhong Cao; Jaeman Byun; Gilbert S. Omenn; Debashis Ghosh; Subramaniam Pennathur; Danny Alexander; Alvin Berger; Jeffrey R. Shuster; John T. Wei; Sooryanarayana Varambally; Christopher Beecher; Arul M. Chinnaiyan

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.


The Plant Cell | 2011

A Sister Group Contrast Using Untargeted Global Metabolomic Analysis Delineates the Biochemical Regulation Underlying Desiccation Tolerance in Sporobolus stapfianus

Melvin J. Oliver; Lining Guo; Danny Alexander; John A. Ryals; Bernard Wone; John C. Cushman

The desiccation-tolerant Sporobolus stapfianus and desiccation-sensitive Sporobolus pyramidalis form a sister group contrast to investigate adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. The metabolic profiles obtained reveal a state of preparedness and a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation. Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.


Nature Medicine | 2011

Detrimental effects of adenosine signaling in sickle cell disease

Yujin Zhang; Yingbo Dai; Jiaming Wen; Weiru Zhang; Almut Grenz; Hong Sun; Lijian Tao; Guangxiu Lu; Danny Alexander; Michael V. Milburn; Louvenia Carter-Dawson; Dorothy E. Lewis; Wenzheng Zhang; Holger K. Eltzschig; Rodney E. Kellems; Michael R. Blackburn; Harinder S. Juneja; Yang Xia

Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.


The Plant Cell | 2012

Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in Arabidopsis

Maozhi Ren; Prakash Venglat; Shuqing Qiu; Li Feng; Yongguo Cao; Edwin Wang; Daoquan Xiang; Jinghe Wang; Danny Alexander; Subbaiah Chalivendra; David C. Logan; Autar K. Mattoo; Gopalan Selvaraj; Raju Datla

This work examines the postembryonic functions of Target of Rapamycin (TOR) in Arabidopsis by generating rapamycin-sensitive Arabidopsis plants via transgenic expression of a yeast protein. Examination of these lines indicates that in plants, as in animals, TOR acts in the integration of metabolism, nutrition, and life span. Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Maize-targeted mutagenesis: A knockout resource for maize

Bruce May; Hong Liu; Erik Vollbrecht; Lynn Senior; Pablo D. Rabinowicz; Donna Roh; Xiaokang Pan; Lincoln Stein; Michael Freeling; Danny Alexander; Robert A. Martienssen

We describe an efficient system for site-selected transposon mutagenesis in maize. A total of 43,776 F1 plants were generated by using Robertsons Mutator (Mu) pollen parents and self-pollinated to establish a library of transposon-mutagenized seed. The frequency of new seed mutants was between 10–4 and 10–5 per F1 plant. As a service to the maize community, maize-targeted mutagenesis selects insertions in genes of interest from this library by using the PCR. Pedigree, knockout, sequence, phenotype, and other information is stored in a powerful interactive database (maize-targeted mutagenesis database) that enables analysis of the entire population and the handling of knockout requests. By inhibiting Mu activity in most F1 plants, we sought to reduce somatic insertions that may cause false positives selected from pooled tissue. By monitoring the remaining Mu activity in the F2, however, we demonstrate that seed phenotypes depend on it, and false positives occur in lines that appear to lack it. We conclude that more than half of all mutations arising in this population are suppressed on losing Mu activity. These results have implications for epigenetic models of inbreeding and for functional genomics.


Scientific Reports | 2015

Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics

Chaoyang Hu; Jianxin Shi; Sheng Quan; Bo Cui; Sabrina Kleessen; Zoran Nikoloski; Takayuki Tohge; Danny Alexander; Lining Guo; Hong Lin; Jing Wang; Xiao Cui; Jun Rao; Qian Luo; Xiangxiang Zhao; Alisdair R. Fernie; Dabing Zhang

Seed metabolites are critically important both for plant development and human nutrition; however, the natural variation in their levels remains poorly characterized. Here we profiled 121 metabolites in mature seeds of a wide panel Oryza sativa japonica and indica cultivars, revealing correlations between the metabolic phenotype and geographic origin of the rice seeds. Moreover, japonica and indica subspecies differed significantly not only in the relative abundances of metabolites but also in their corresponding metabolic association networks. These findings provide important insights into metabolic adaptation in rice subgroups, bridging the gap between genome and phenome, and facilitating the identification of genetic control of metabolic properties that can serve as a basis for the future improvement of rice quality via metabolic engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Plasma metabolomic profiles enhance precision medicine for volunteers of normal health

Lining Guo; Michael V. Milburn; John A. Ryals; Shaun Lonergan; Matthew W. Mitchell; Jacob E. Wulff; Danny Alexander; Anne M. Evans; Brandi Bridgewater; Luke A.D. Miller; Manuel L. Gonzalez-Garay; C. Thomas Caskey

Significance Metabolomics has been increasingly recognized as a powerful functional tool that integrates the impacts from genetics, environment, microbiota, and xenobiotics. We used a broad-spectrum metabolomics platform to analyze plasma samples from 80 adults of normal health. The comprehensive metabolic profiles provided a functional readout to assess the penetrance of gene mutations identified by whole-exome sequencing on these individuals. Conversely, metabolic abnormalities identified by statistical analysis uncovered potential damaging mutations that were previously unappreciated. Additionally, we found metabolic signatures consistent with early signs of disease conditions and drug effects associated with efficacy and toxicity. Our findings demonstrate that metabolomics could be an effective tool in precision medicine for disease risk assessment and customized drug therapy in clinics. Precision medicine, taking account of human individuality in genes, environment, and lifestyle for early disease diagnosis and individualized therapy, has shown great promise to transform medical care. Nontargeted metabolomics, with the ability to detect broad classes of biochemicals, can provide a comprehensive functional phenotype integrating clinical phenotypes with genetic and nongenetic factors. To test the application of metabolomics in individual diagnosis, we conducted a metabolomics analysis on plasma samples collected from 80 volunteers of normal health with complete medical records and three-generation pedigrees. Using a broad-spectrum metabolomics platform consisting of liquid chromatography and GC coupled with MS, we profiled nearly 600 metabolites covering 72 biochemical pathways in all major branches of biosynthesis, catabolism, gut microbiome activities, and xenobiotics. Statistical analysis revealed a considerable range of variation and potential metabolic abnormalities across the individuals in this cohort. Examination of the convergence of metabolomics profiles with whole-exon sequences (WESs) provided an effective approach to assess and interpret clinical significance of genetic mutations, as shown in a number of cases, including fructose intolerance, xanthinuria, and carnitine deficiency. Metabolic abnormalities consistent with early indications of diabetes, liver dysfunction, and disruption of gut microbiome homeostasis were identified in several volunteers. Additionally, diverse metabolic responses to medications among the volunteers may assist to identify therapeutic effects and sensitivity to toxicity. The results of this study demonstrate that metabolomics could be an effective approach to complement next generation sequencing (NGS) for disease risk analysis, disease monitoring, and drug management in our goal toward precision care.


Toxicology and Applied Pharmacology | 2013

Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats.

Makoto Yamazaki; Manami Miyake; Hiroko Sato; Naoya Masutomi; Naohisa Tsutsui; Klaus-Peter Adam; Danny Alexander; Kay A. Lawton; Michael V. Milburn; John A. Ryals; Jacob E. Wulff; Lining Guo

Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers.


Journal of Clinical Investigation | 2014

Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression

Yujin Zhang; Vladimir Berka; Anren Song; Kaiqi Sun; Wei Wang; Weiru Zhang; Chen Ning; Chonghua Li; Qibo Zhang; Mikhail Bogdanov; Danny Alexander; Michael V. Milburn; Mostafa H. Ahmed; Han Lin; Modupe Idowu; Jun Zhang; Gregory J. Kato; Osheiza Abdulmalik; Wenzheng Zhang; William Dowhan; Rodney E. Kellems; Pumin Zhang; Jianping Jin; Martin K. Safo; Ah Lim Tsai; Harinder S. Juneja; Yang Xia

Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates multicellular functions through interactions with its receptors on cell surfaces. S1P is enriched and stored in erythrocytes; however, it is not clear whether alterations in S1P are involved in the prevalent and debilitating hemolytic disorder sickle cell disease (SCD). Here, using metabolomic screening, we found that S1P is highly elevated in the blood of mice and humans with SCD. In murine models of SCD, we demonstrated that elevated erythrocyte sphingosine kinase 1 (SPHK1) underlies sickling and disease progression by increasing S1P levels in the blood. Additionally, we observed elevated SPHK1 activity in erythrocytes and increased S1P in blood collected from patients with SCD and demonstrated a direct impact of elevated SPHK1-mediated production of S1P on sickling that was independent of S1P receptor activation in isolated erythrocytes. Together, our findings provide insights into erythrocyte pathophysiology, revealing that a SPHK1-mediated elevation of S1P contributes to sickling and promotes disease progression, and highlight potential therapeutic opportunities for SCD.


Amyotrophic Lateral Sclerosis | 2012

Biochemical alterations associated with ALS

Kay A. Lawton; Merit Cudkowicz; Meredith V. Brown; Danny Alexander; Rebecca Caffrey; Jacob E. Wulff; Robert Bowser; Robert Lawson; Matt Jaffa; Michael V. Milburn; John Ryals; James D. Berry

Abstract Our objective was to identify metabolic pathways affected by ALS using non-targeted metabolomics in plasma, comparing samples from healthy volunteers to those from ALS patients. This discovery could become the basis for the identification of therapeutic targets and diagnostic biomarkers of ALS. Two distinct cross-sectional studies were conducted. Plasma was collected from 62 (Study 1) and 99 (Study 2) participants meeting El Escorial criteria for possible, probable, or definite ALS; 69 (Study 1) and 48 (Study 2) healthy controls samples were collected. Global metabolic profiling was used to detect and evaluate biochemical signatures of ALS. Twenty-three metabolites were significantly altered in plasma from ALS patients in both studies. These metabolites include biochemicals in pathways associated with neuronal change, hypermetabolism, oxidative damage, and mitochondrial dysfunction, all of which are proposed disease mechanisms in ALS. The data also suggest possible hepatic dysfunction associated with ALS. In conclusion, the data presented here provide insight into the pathophysiology of ALS while suggesting promising areas of focus for future studies. The metabolomics approach can generate novel hypotheses regarding ALS disease mechanisms with the potential to identify therapeutic targets and novel diagnostic biomarkers.

Collaboration


Dive into the Danny Alexander's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Yu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Eric Boerwinkle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Zheng

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Nettleton

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge