Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dante J. Heredia is active.

Publication


Featured researches published by Dante J. Heredia.


Gastroenterology | 2009

Localized Release of Serotonin (5-Hydroxytryptamine) by a Fecal Pellet Regulates Migrating Motor Complexes in Murine Colon

Dante J. Heredia; Eamonn J. Dickson; Peter O. Bayguinov; Grant W. Hennig; Terence K. Smith

BACKGROUND & AIMS The colonic migrating motor complex (CMMC) is a motor pattern that regulates the movement of fecal matter through a rhythmic sequence of electrical activity and/or contractions along the large bowel. CMMCs have largely been studied in empty preparations; we investigated whether local reflexes generated by a fecal pellet modify the CMMC to initiate propulsive activity. METHODS Recordings of CMMCs were made from the isolated murine large bowel, with or without a fecal pellet. Transducers were placed along the colon to record muscle tension and propulsive force on the pellet and microelectrodes were used to record electrical activity from either side of a fecal pellet, circular muscle cells oral and anal of a pellet, and in colons without the mucosa. RESULTS Spontaneous CMMCs propagated in both an oral or anal direction. When a pellet was inserted, CMMCs increased in frequency and propagated anally, exerting propulsive force on the pellet. The amplitude of slow waves increased during the CMMC. Localized mucosal stimulation/circumferential stretch evoked a CMMC, regardless of stimulus strength. The serotonin (5-hydroxytryptamine-3) receptor antagonist ondansetron reduced the amplitude of the CMMC, the propulsive force on the pellet, and the response to mucosal stroking, but increased the apparent conduction velocity of the CMMC. Removing the mucosa abolished spontaneous CMMCs, which still could be evoked by electrical stimulation. CONCLUSIONS The fecal pellet activates local mucosal reflexes, which release serotonin (5-hydroxytryptamine) from enterochromaffin cells, and stretch reflexes that determine the site of origin and propagation of the CMMC, facilitating propulsion.


The Journal of Physiology | 2013

Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1

Dante J. Heredia; Michael D. Gershon; Sang Don Koh; Robert D. Corrigan; Takanubu Okamoto; Terence K. Smith

•  Previous studies have indicated that neither neuronal nor mucosal 5‐hydroxytryptamine (5‐HT) are important for colonic migrating motor complexes (CMMCs) or faecal pellet propulsion. Therefore, tryptophan hydroxylase 1 knockout (TPH1KO) mice were used to examine the role of mucosal 5‐HT in generating CMMCs and faecal pellet propulsion, as TPH1 is the regulatory enzyme necessary for the synthesis of 5‐HT in enterochromaffin cells in the mucosa. •  Control mice generated a robust CMMC when the mucosa was mechanically stimulated, which was blocked by ondansetron (5‐HT3 antagonist), and could propagate faecal pellets that did not significantly distend the bowel, suggesting that they were propelled by mucosal reflexes in the absence of stretch reflexes. •  TPH1KO mice exhibited no mucosal reflexes, reduced responses to intraluminal distension and propelled only larger faecal pellets, suggesting that they relied upon stretch reflexes alone. •  In control mice, CMMCs, which can propel a faecal pellet, propagated in an oral to anal direction, whereas, in TPH1KO mice, they rarely propagated. •  Both the propagation and amplitude of CMMCs were reduced by ondansetron in control mice, whereas this drug did not affect CMMCs in TPH1KO mice. •  This suggests that 5‐HT release from the mucosa and stretch reflexes are important for normal colonic propulsion.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex

Eamonn J. Dickson; Dante J. Heredia; Terence K. Smith

The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT(3) receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT(1A), 5-HT(3), and 5-HT(7) receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa. Spontaneous CMMCs were recorded from the CM in isolated murine colons but not in preparations without the mucosa. In mucosaless preparations, ondansetron (3 microM; 5-HT(3) antagonist) plus hexamethonium (100 microM) completely blocked spontaneous inhibitory junction potentials, depolarized the CM. Ondansetron blocked the preceding hyperpolarization associated with a CMMC. Spontaneous CMMCs and CMMCs evoked by spritzing 5-HT (10 and 100 microM) or nerve stimulation in preparations without the mucosa were blocked by SB 258719 or SB 269970 (1-5 microM; 5-HT(7) antagonists). Both NAN-190 and (S)-WAY100135 (1-5 microM; 5-HT(1A) antagonists) blocked spontaneous CMMCs and neurally evoked CMMCs in preparations without the mucosa. Both NAN-190 and (S)-WAY100135 caused an atropine-sensitive depolarization of the CM. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP) (10 microM), and 5-carboxamidotryptamine (5-CT) (5 microM; 5-HT(1/5/7) agonist) increased the frequency of spontaneous CMMCs. 5-HTP and 5-CT also induced CMMCs in preparations with and without the mucosa, which were blocked by SB 258719. 5-HT(1A), 5-HT(3), and 5-HT(7) receptors, most likely on Dogiel Type II/AH neurons, are important in initiating, generating, and propagating the CMMC. Tonic inhibition of the CM appears to be driven by ongoing activity in descending serotonergic interneurons; by activating 5-HT(7) receptors on AH neurons these interneurons also contribute to the generation of the CMMC.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

The mechanisms underlying the generation of the colonic migrating motor complex in both wild-type and nNOS knockout mice

Eamonn J. Dickson; Dante J. Heredia; Conor J. McCann; Grant W. Hennig; Terence K. Smith

Colonic migrating motor complexes (CMMCs) propel fecal contents and are altered in diseased states, including slow-transit constipation. However, the mechanisms underlying the CMMCs are controversial because it has been proposed that disinhibition (turning off of inhibitory neurotransmission) or excitatory nerve activity generate the CMMC. Therefore, our aims were to reexamine the mechanisms underlying the CMMC in the colon of wild-type and neuronal nitric oxide synthase (nNOS)(-/-) mice. CMMCs were recorded from the isolated murine large bowel using intracellular recordings of electrical activity from circular muscle (CM) combined with tension recording. Spontaneous CMMCs occurred in both wild-type (frequency: 0.3 cycles/min) and nNOS(-/-) mice (frequency: 0.4 cycles/min). CMMCs consisted of a hyperpolarization, followed by fast oscillations (slow waves) with action potentials superimposed on a slow depolarization (wild-type: 14.0 +/- 0.6 mV; nNOS(-/-): 11.2 +/- 1.5 mV). Both atropine (1 microM) and MEN 10,376 [neurokinin 2 (NK2) antagonist; 0.5 microM] added successively reduced the slow depolarization and the number of action potentials but did not abolish the fast oscillations. The further addition of RP 67580 (NK1 antagonist; 0.5 microM) blocked the fast oscillations and the CMMC. Importantly, none of the antagonists affected the resting membrane potential, suggesting that ongoing tonic inhibition of the CM was maintained. Fecal pellet propulsion, which was blocked by the NK2 or the NK1 antagonist, was slower down the longer, more constricted nNOS(-/-) mouse colon (wild-type: 47.9 +/- 2.4 mm; nNOS(-/-): 57.8 +/- 1.4 mm). These observations suggest that excitatory neurotransmission enhances pacemaker activity during the CMMC. Therefore, the CMMC is likely generated by a synergistic interaction between neural and interstitial cells of Cajal networks.


The Journal of Physiology | 2012

Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine.

Matthew J. Broadhead; Peter O. Bayguinov; Takanobu Okamoto; Dante J. Heredia; Terence K. Smith

Non‐technical summary  A ganglionated neural plexus, the myenteric plexus, within the colon generates a propagating contraction called the colonic migrating motor complex (CMMC) that underlies faecal pellet propulsion. Neurons in the myenteric plexus are surrounded by a network of enteric glia cells (EGCs), which were traditionally thought to be the glue that held the neurons together. Using imaging techniques, we demonstrate that 36% of EGCs respond with prolonged Ca2+ transients following their activation by excitatory nerve fibres that generate the CMMC, suggesting that EGCs are innervated and are activated during the CMMC.


The Journal of Physiology | 2010

Colonic elongation inhibits pellet propulsion and migrating motor complexes in the murine large bowel.

Dante J. Heredia; Eamonn J. Dickson; Peter O. Bayguinov; Grant W. Hennig; Terence K. Smith

The colonic migrating motor complex (CMMC) is a rhythmically occurring neurally mediated motor pattern. Although the CMMC spontaneously propagates along an empty colon it is responsible for faecal pellet propulsion in the murine large bowel. Unlike the peristaltic reflex, the CMMC is an ‘all or none’ event that appears to be dependent upon Dogiel Type II/AH neurons for its regenerative slow propagation down the colon. A reduction in the amplitude of CMMCs or an elongated colon have both been thought to underlie slow transit constipation, although whether these phenomena are related has not been considered. In this study we examined the mechanisms by which colonic elongation might affect the CMMC using video imaging of the colon, tension and electrophysiological recordings from the muscle and Ca2+ imaging of myenteric neurons. As faecal pellets were expelled from the murine colon, it shortened by up to ∼29%. Elongation of the colon resulted in a linear reduction in the velocity of a faecal pellet and the amplitude of spontaneous CMMCs. Elongation of the oral end of a colonic segment reduced the amplitude of CMMCs, whereas elongation of the anal end of the colon evoked a premature CMMC, and caused the majority of CMMCs to propagate in an anal to oral direction. Dogiel Type II/AH sensory neurons and most other myenteric neurons responded to oral elongation with reduced amplitude and frequency of spontaneous Ca2+ transients, whereas anal elongation increased their amplitude and frequency in most neurons. The inhibitory effects of colonic elongation were reduced by blocking nitric oxide (NO) production with l‐NA (100 μm) and soluble guanylate cyclase with 1H‐[1,2,4]oxadiazolo[4,3‐a]quinoxalin‐1‐one (ODQ; 10 μm); whereas, l‐arginine (1–2 mm) enhanced the inhibitory effects of colonic elongation. In conclusion, polarized neural reflexes can be triggered by longitudinal stretch. The dominant effect of elongation is to reduce CMMCs primarily by inhibiting Dogiel Type II/AH neurons, thus facilitating colonic accommodation and slow transit.


The Journal of Physiology | 2008

Polarized intrinsic neural reflexes in response to colonic elongation

Eamonn J. Dickson; Grant W. Hennig; Dante J. Heredia; Hyun-Tai Lee; Peter O. Bayguinov; Nick J. Spencer; Terence K. Smith

Propulsion in both small and large intestine is largely mediated by the peristaltic reflex; despite this, transit through the shorter colon is at least 10 times slower. Recently we demonstrated that elongating a segment of colon releases nitric oxide (NO) to inhibit peristalsis. The aims of this study were to determine if colonic elongation was physiologically significant, and whether elongation activated polarized intrinsic neural reflexes. Video imaging monitored fecal pellet evacuation from isolated guinea‐pig colons full of pellets. Recordings were made from the circular muscle (CM) and longitudinal muscle (LM) in flat sheet preparations using either intracellular microelectrode or Ca2+ imaging techniques. Full colons were 158.1 ± 6.1% longer than empty colons. As each pellet was expelled, the colon shortened and pellet velocity increased exponentially (full 0.34, empty 1.01 mm s−1). In flat sheet preparations, maintained circumferential stretch generated ongoing peristaltic activity (oral excitatory and anal inhibitory junction potentials) and Ca2+ waves in LM and CM. Colonic elongation (140% of its empty slack length) applied oral to the recording site abolished these activities, whereas anal elongation significantly increased the frequency and amplitude of ongoing peristaltic activity. Oral elongation inhibited the excitation produced by anal elongation; this inhibitory effect was reversed by blocking NO synthesis. Pelvic nerve stimulation elicited polarized responses that were also suppressed by NO released during colonic elongation. In conclusion, longitudinal stretch excites specific mechosensitive ascending and descending interneurons, leading to activation of polarized reflexes. The dominance of the descending inhibitory reflex leads to slowed emptying of pellets in a naturally elongated colon.


Frontiers in Cellular Neuroscience | 2015

Use of Genetically Encoded Calcium Indicators (GECIs) Combined with Advanced Motion Tracking Techniques to Examine the Behavior of Neurons and Glia in the Enteric Nervous System of the Intact Murine Colon.

Grant W. Hennig; Thomas W. Gould; Sang D Koh; Robert D. Corrigan; Dante J. Heredia; Matthew C Shonnard; Terence K. Smith

Genetically encoded Ca2+ indicators (GECIs) have been used extensively in many body systems to detect Ca2+ transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca2+ indicator GCaMP3 in different classes of neurons and glia to determine their effectiveness in measuring activity in enteric neural networks during colonic motor behaviors. We bred several GCaMP3 mice: (1) Wnt1-GCaMP3, all enteric neurons and glia; (2) GFAP-GCaMP3, enteric glia; (3) nNOS-GaMP3, enteric nitrergic neurons; and (4) ChAT-GCaMP3, enteric cholinergic neurons. These mice allowed us to study the behavior of the enteric neurons in the intact colon maintained at a physiological temperature, especially during the colonic migrating motor complex (CMMC), using low power Ca2+ imaging. In this preliminary study, we observed neuronal and glial cell Ca2+ transients in specific cells in both the myenteric and submucous plexus in all of the transgenic mice variants. The number of cells that could be simultaneously imaged at low power (100–1000 active cells) through the undissected gut required advanced motion tracking and analysis routines. The pattern of Ca2+ transients in myenteric neurons showed significant differences in response to spontaneous, oral or anal stimulation. Brief anal elongation or mucosal stimulation, which evokes a CMMC, were the most effective stimuli and elicited a powerful synchronized and prolonged burst of Ca2+ transients in many myenteric neurons, especially when compared with the same neurons during a spontaneous CMMC. In contrast, oral elongation, which normally inhibits CMMCs, appeared to suppress Ca2+ transients in some of the neurons active during a spontaneous or an anally evoked CMMC. The activity in glial networks appeared to follow neural activity but continued long after neural activity had waned. With these new tools an unprecedented level of detail can be recorded from the enteric nervous system (ENS) with minimal manipulation of tissue. These techniques can be extended in order to better understand the roles of particular enteric neurons and glia during normal and disordered motility.


Journal of Neuropathology and Experimental Neurology | 2016

Structural and Functional Abnormalities of the Neuromuscular Junction in the Trembler-J Homozygote Mouse Model of Congenital Hypomyelinating Neuropathy

Alexandra N. Scurry; Dante J. Heredia; Cheng-Yuan Feng; Gregory B. Gephart; Grant W. Hennig; Thomas W. Gould

Mutations in peripheral myelin protein 22 (PMP22) result in the most common form of Charcot-Marie-Tooth (CMT) disease, CMT1A. This hereditary peripheral neuropathy is characterized by dysmyelination of peripheral nerves, reduced nerve conduction velocity, and muscle weakness. A PMP22 point mutation in L16P (leucine 16 to proline) underlies a form of human CMT1A as well as the Trembler-J mouse model of CMT1A. Homozygote Trembler-J mice (TrJ) die early postnatally, fail to make peripheral myelin, and, therefore, are more similar to patients with congenital hypomyelinating neuropathy than those with CMT1A. Because recent studies of inherited neuropathies in humans and mice have demonstrated that dysfunction and degeneration of neuromuscular synapses or junctions (NMJs) often precede impairments in axonal conduction, we examined the structure and function of NMJs in TrJ mice. Although synapses appeared to be normally innervated even in end-stage TrJ mice, the growth and maturation of the NMJs were altered. In addition, the amplitudes of nerve-evoked muscle endplate potentials were reduced and there was transmission failure during sustained nerve stimulation. These results suggest that the severe congenital hypomyelinating neuropathy that characterizes TrJ mice results in structural and functional deficits of the developing NMJ.


eLife | 2018

Activity-induced Ca2+ signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue

Dante J. Heredia; Cheng-Yuan Feng; Grant W. Hennig; Robert Renden; Thomas W. Gould

Perisynaptic glial cells respond to neural activity by increasing cytosolic calcium, but the significance of this pathway is unclear. Terminal/perisynaptic Schwann cells (TPSCs) are a perisynaptic glial cell at the neuromuscular junction that respond to nerve-derived substances such as acetylcholine and purines. Here, we provide genetic evidence that activity-induced calcium accumulation in neonatal TPSCs is mediated exclusively by one subtype of metabotropic purinergic receptor. In P2ry1 mutant mice lacking these responses, postsynaptic, rather than presynaptic, function was altered in response to nerve stimulation. This impairment was correlated with a greater susceptibility to activity-induced muscle fatigue. Interestingly, fatigue in P2ry1 mutants was more greatly exacerbated by exposure to high potassium than in control mice. High potassium itself increased cytosolic levels of calcium in TPSCs, a response which was also reduced P2ry1 mutants. These results suggest that activity-induced calcium responses in TPSCs regulate postsynaptic function and muscle fatigue by regulating perisynaptic potassium.

Collaboration


Dive into the Dante J. Heredia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge