Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dante Mantini is active.

Publication


Featured researches published by Dante Mantini.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Electrophysiological signatures of resting state networks in the human brain

Dante Mantini; Mauro Gianni Perrucci; C. Del Gratta; G.L. Romani; M. Corbetta

Functional neuroimaging and electrophysiological studies have documented a dynamic baseline of intrinsic (not stimulus- or task-evoked) brain activity during resting wakefulness. This baseline is characterized by slow (<0.1 Hz) fluctuations of functional imaging signals that are topographically organized in discrete brain networks, and by much faster (1–80 Hz) electrical oscillations. To investigate the relationship between hemodynamic and electrical oscillations, we have adopted a completely data-driven approach that combines information from simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Using independent component analysis on the fMRI data, we identified six widely distributed resting state networks. The blood oxygenation level-dependent signal fluctuations associated with each network were correlated with the EEG power variations of delta, theta, alpha, beta, and gamma rhythms. Each functional network was characterized by a specific electrophysiological signature that involved the combination of different brain rhythms. Moreover, the joint EEG/fMRI analysis afforded a finer physiological fractionation of brain networks in the resting human brain. This result supports for the first time in humans the coalescence of several brain rhythms within large-scale brain networks as suggested by biophysical studies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Temporal dynamics of spontaneous MEG activity in brain networks

Francesco de Pasquale; Stefania Della Penna; Abraham Z. Snyder; Christopher Lewis; Dante Mantini; Laura Marzetti; Paolo Belardinelli; Luca Ciancetta; Vittorio Pizzella; Gian Luca Romani; Maurizio Corbetta

Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands—that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses.


PLOS ONE | 2010

Altered Functional Connectivity and Small-World in Mesial Temporal Lobe Epilepsy

Wei-Ting Liao; Zhiqiang Zhang; Zhengyong Pan; Dante Mantini; Jurong Ding; Xujun Duan; Cheng Luo; Guangming Lu; Huafu Chen

Background The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low–frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases. Methodology/Principal Findings In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE), using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length. Conclusions/Significance We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.


Brain | 2011

Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy

Zhiqiang Zhang; Wei Liao; Huafu Chen; Dante Mantini; Jurong Ding; Qiang Xu; Zhengge Wang; Cuiping Yuan; Guanghui Chen; Qing Jiao; Guangming Lu

The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.


NeuroImage | 2010

Selective aberrant functional connectivity of resting state networks in social anxiety disorder.

Wei Liao; Huafu Chen; Yuanbo Feng; Dante Mantini; Claudio Gentili; Zhengyong Pan; Jurong Ding; Xujun Duan; Changjian Qiu; Su Lui; Qiyong Gong; Weiwei Zhang

Several functional MRI (fMRI) activation studies have highlighted specific differences in brain response in social anxiety disorder (SAD) patients. Little is known, so far, about the changes in the functional architecture of resting state networks (RSNs) in SAD during resting state. We investigated statistical differences in RSNs on 20 SAD and 20 controls using independent component analysis. A diffuse impact on widely distributed RSNs and selective changes of RSN intrinsic functional connectivity were observed in SAD. Functional connectivity was decreased in the somato-motor (primary and motor cortices) and visual (primary visual cortex) networks, increased in a network including medial prefrontal cortex which is thought to be involved in self-referential processes, and increased or decreased in the default mode network (posterior cingulate cortex/precuneus, bilateral inferior parietal gyrus, angular gyrus, middle temporal gyrus, and superior and medial frontal gyrus) which has been suggested to be involved in episodic memory, and self-projection, the dorsal attention network (middle and superior occipital gyrus, inferior and superior parietal gyrus, and middle and superior frontal gyrus) which is thought to mediate goal-directed top-down processing, the core network (insula-cingulate cortices) which is associated with task control function, and the central-executive network (fronto-parietal cortices). A relationship between functional connectivity and disease severity was found in specific regions of RSNs, including medial and lateral prefrontal cortex, as well as parietal and occipital regions. Our results might supply a novel way to look into neuro-pathophysiological mechanisms in SAD patients.


Human Brain Mapping | 2011

Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI.

Wei Liao; Zhiqiang Zhang; Zhengyong Pan; Dante Mantini; Jurong Ding; Xujun Duan; Cheng Luo; Zhengge Wang; Qifu Tan; Guangming Lu; Huafu Chen

Studies of in mesial temporal lobe epilepsy (mTLE) patients with hippocampal sclerosis (HS) have reported reductions in both functional and structural connectivity between hippocampal structures and adjacent brain regions. However, little is known about the connectivity among the default mode network (DMN) in mTLE. Here, we hypothesized that both functional and structural connectivity within the DMN were disturbed in mTLE. To test this hypothesis, functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were applied to examine the DMN connectivity of 20 mTLE patients, and 20 gender‐ and age‐matched healthy controls. Combining these two techniques, we explored the changes in functional (temporal correlation coefficient derived from fMRI) and structural (path length and connection density derived from DTI tractography) connectivity of the DMN. Compared to the controls, we found that both functional and structural connectivity were significantly decreased between the posterior cingulate cortex (PCC)/precuneus (PCUN) and bilateral mesial temporal lobes (mTLs) in patients. No significant between‐group difference was found between the PCC/PCUN and medial prefrontal cortex (mPFC). In addition, functional connectivity was found to be correlated with structural connectivity in two pairwise regions, namely between the PCC/PCUN and bilateral mTLs, respectively. Our results suggest that the decreased functional connectivity within the DMN in mTLE may be a consequence of the decreased connection density underpinning the degeneration of structural connectivity. Hum Brain Mapp, 2011.


Science | 2013

Intact but less accessible phonetic representations in adults with dyslexia

Bart Boets; H.P. Op de Beeck; Maaike Vandermosten; Sophie K. Scott; Céline R. Gillebert; Dante Mantini; Jessica Bulthé; Stefan Sunaert; J Wouters; Pol Ghesquière

Good Foundations, Poor Access Dyslexia makes reading and spelling difficult. Boets et al. (p. 1251) analyzed whether for adult readers with dyslexia the internal references for word sounds are poorly constructed or whether accessing those references is abnormally difficult. Brain imaging during phonetic discrimination tasks suggested that the internal dictionary for word sounds was correct, but accessing the dictionary was more difficult than normal. The persistent reading problems observed in dyslexia may derive from inefficient communication within the brain. Dyslexia is a severe and persistent reading and spelling disorder caused by impairment in the ability to manipulate speech sounds. We combined functional magnetic resonance brain imaging with multivoxel pattern analysis and functional and structural connectivity analysis in an effort to disentangle whether dyslexics’ phonological deficits are caused by poor quality of the phonetic representations or by difficulties in accessing intact phonetic representations. We found that phonetic representations are hosted bilaterally in primary and secondary auditory cortices and that their neural quality (in terms of robustness and distinctness) is intact in adults with dyslexia. However, the functional and structural connectivity between the bilateral auditory cortices and the left inferior frontal gyrus (a region involved in higher-level phonological processing) is significantly hampered in dyslexics, suggesting deficient access to otherwise intact phonetic representations.


The Journal of Neuroscience | 2011

Default Mode of Brain Function in Monkeys

Dante Mantini; Annelis Gerits; Koen Nelissen; Olivier Joly; Luciano Simone; Hiromasa Sawamura; Claire Wardak; Guy A. Orban; Randy L. Buckner; Wim Vanduffel

Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.


NeuroImage | 2007

Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis

Dante Mantini; Mauro Gianni Perrucci; Simone Cugini; A. Ferretti; G.L. Romani; C. Del Gratta

The simultaneous recording of EEG and fMRI is a promising method for combining the electrophysiological and hemodynamic information on cerebral dynamics. However, EEG recordings performed in the MRI scanner are contaminated by imaging, ballistocardiographic (BCG) and ocular artifacts. A number of processing techniques for the cancellation of fMRI environment disturbances exist: the most popular is averaged artifact subtraction (AAS), which performs well for the imaging artifact, but has some limitations in removing the BCG artifact, due to the variability in cardiac wave duration and shape; furthermore, no processing method to attenuate ocular artifact is currently used in EEG/fMRI, and contaminated epochs are simply rejected before signal analysis. In this work, we present a comprehensive method based on independent component analysis (ICA) for simultaneously removing BCG and ocular artifacts from the EEG recordings, as well as residual MRI contamination left by AAS. The ICA method has been tested on event-related potentials (ERPs) obtained from a visual oddball paradigm: it is very effective in attenuating artifacts in order to reconstruct clear brain signals from EEG acquired in the MRI scanner. It performs significantly better than the AAS method in removing the BCG artifact. Furthermore, since ocular artifacts can be completely suppressed, a larger number of trials is available for analysis. A comparison of ERPs inside the magnetic environment with those obtained out of the MRI scanner confirms that no systematic bias in the ERP waveform is produced by the ICA method.


NeuroImage | 2016

Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?

Rikkert Hindriks; Mohit H. Adhikari; Yusuke Murayama; Marco Ganzetti; Dante Mantini; Nk Logothetis; Gustavo Deco

During the last several years, the focus of research on resting-state functional magnetic resonance imaging (fMRI) has shifted from the analysis of functional connectivity averaged over the duration of scanning sessions to the analysis of changes of functional connectivity within sessions. Although several studies have reported the presence of dynamic functional connectivity (dFC), statistical assessment of the results is not always carried out in a sound way and, in some studies, is even omitted. In this study, we explain why appropriate statistical tests are needed to detect dFC, we describe how they can be carried out and how to assess the performance of dFC measures, and we illustrate the methodology using spontaneous blood-oxygen level-dependent (BOLD) fMRI recordings of macaque monkeys under general anesthesia and in human subjects under resting-state conditions. We mainly focus on sliding-window correlations since these are most widely used in assessing dFC, but also consider a recently proposed non-linear measure. The simulations and methodology, however, are general and can be applied to any measure. The results are twofold. First, through simulations, we show that in typical resting-state sessions of 10 min, it is almost impossible to detect dFC using sliding-window correlations. This prediction is validated by both the macaque and the human data: in none of the individual recording sessions was evidence for dFC found. Second, detection power can be considerably increased by session- or subject-averaging of the measures. In doing so, we found that most of the functional connections are in fact dynamic. With this study, we hope to raise awareness of the statistical pitfalls in the assessment of dFC and how they can be avoided by using appropriate statistical methods.

Collaboration


Dive into the Dante Mantini's collaboration.

Top Co-Authors

Avatar

Gian Luca Romani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Maurizio Corbetta

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Giovanna Alleva

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Wim Vanduffel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

G.L. Romani

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Laura Marzetti

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Gustavo Deco

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Céline R. Gillebert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Silvia Comani

University of Chieti-Pescara

View shared research outputs
Researchain Logo
Decentralizing Knowledge