Dante Neculai
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dante Neculai.
Nature Reviews Immunology | 2013
Johnathan Canton; Dante Neculai; Sergio Grinstein
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimers disease.
Cell | 2007
Xiaojing Tang; Stephen Orlicky; Zhen-Yuan Lin; Andrew Willems; Dante Neculai; Derek F. Ceccarelli; Frank Mercurio; Brian H. Shilton; Frank Sicheri; Mike Tyers
SCF ubiquitin ligases recruit substrates for degradation via F box protein adaptor subunits. WD40 repeat F box proteins, such as Cdc4 and beta-TrCP, contain a conserved dimerization motif called the D domain. Here, we report that the D domain protomers of yeast Cdc4 and human beta-TrCP form a superhelical homotypic dimer. Disruption of the D domain compromises the activity of yeast SCF(Cdc4) toward the CDK inhibitor Sic1 and other substrates. SCF(Cdc4) dimerization has little effect on the affinity for Sic1 but markedly stimulates ubiquitin conjugation. A model of the dimeric holo-SCF(Cdc4) complex based on small-angle X-ray scatter measurements reveals a suprafacial configuration, in which substrate-binding sites and E2 catalytic sites lie in the same plane with a separation of 64 A within and 102 A between each SCF monomer. This spatial variability may accommodate diverse acceptor lysine geometries in both substrates and the elongating ubiquitin chain and thereby increase catalytic efficiency.
Cell | 2011
Derek F. Ceccarelli; Xiaojing Tang; Benoit Pelletier; Stephen Orlicky; Weilin Xie; Veronique Plantevin; Dante Neculai; Yang-Chieh Chou; Abiodun A. Ogunjimi; Abdallah Al-Hakim; Xaralabos Varelas; Joanna Koszela; Gregory A. Wasney; Masoud Vedadi; Sirano Dhe-Paganon; Sarah Cox; Shuichan Xu; Antonia Lopez-Girona; Frank Mercurio; Jeff Wrana; Daniel Durocher; Sylvain Meloche; David R. Webb; Mike Tyers; Frank Sicheri
In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.
Science | 2013
Andreas Ernst; George V. Avvakumov; Jiefei Tong; Yihui Fan; Yanling Zhao; Philipp Alberts; Avinash Persaud; John R. Walker; Ana-Mirela Neculai; Dante Neculai; Andrew Vorobyov; Pankaj Garg; Linda G. Beatty; Pak-Kei Chan; Yu-Chi Juang; Marie-Claude Landry; Christina Yeh; Elton Zeqiraj; Konstantina Karamboulas; Abdellah Allali-Hassani; Masoud Vedadi; Mike Tyers; Jason Moffat; Frank Sicheri; Laurence Pelletier; Daniel Durocher; Brian Raught; Daniela Rotin; Jianhua Yang; Michael F. Moran
Modifying Deubiquitinases Protein ubiquitination is a widespread mechanism for cellular regulation, and new regulators are valuable research tools and may help to generate therapeutic small molecules. Ernst et al. (p. 590, published online 3 January) used known crystal structures to roughly define the interaction domain between a ubiquitin-specific protease and a ubiquitinated substrate and then screened ubiquitin variants with changes in these residues to find variants that acted as potent and specific regulators that could modify ubiquitin pathway regulation in cells. A technique for developing specific and potent enzyme inhibitors is validated on enzymes of the ubiquitin‑proteasome system. The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.
Nature | 2013
Dante Neculai; Michael Schwake; M. Ravichandran; Friederike Zunke; Richard F. Collins; J. Peters; Mirela Neculai; Jonathan Plumb; Peter Loppnau; Juan Carlos Pizarro; Alma Seitova; William S. Trimble; Paul Saftig; Sergio Grinstein; Sirano Dhe-Paganon
Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of β-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and β-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimer’s disease. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where β-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.
Molecular Cell | 2008
Daniel Y L Mao; Dante Neculai; Michael Downey; Stephen Orlicky; Yosr Z. Haffani; Derek F. Ceccarelli; Jenny S.L. Ho; Rachel K. Szilard; Wei Zhang; Cynthia S.W. Ho; Leo Wan; Christophe Farès; Sigrun Rumpel; Igor Kurinov; C.H. Arrowsmith; Daniel Durocher; Frank Sicheri
Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family.
Molecular & Cellular Proteomics | 2012
Yi Sheng; Jenny H. Hong; Ryan Doherty; Tharan Srikumar; Jonathan Shloush; George V. Avvakumov; John R. Walker; Sheng Xue; Dante Neculai; Janet W. Wan; Sung K. Kim; C.H. Arrowsmith; Brian Raught; Sirano Dhe-Paganon
Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an “acidic trough” located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction. Our data set represents the first comprehensive analysis of E2-HECT E3 interactions, and thus provides a framework for better understanding the molecular mechanisms of ubiquitylation.
Nucleic Acids Research | 2013
Leo Wan; Daniel Y L Mao; Dante Neculai; Jonathan Strecker; David Chiovitti; Igor Kurinov; Gennadiy Poda; Neroshan Thevakumaran; Fang Yuan; Rachel K. Szilard; Elena Lissina; Corey Nislow; Amy A. Caudy; Daniel Durocher; Frank Sicheri
The universally conserved Kae1/Qri7/YgjD and Sua5/YrdC protein families have been implicated in growth, telomere homeostasis, transcription and the N6-threonylcarbamoylation (t6A) of tRNA, an essential modification required for translational fidelity by the ribosome. In bacteria, YgjD orthologues operate in concert with the bacterial-specific proteins YeaZ and YjeE, whereas in archaeal and eukaryotic systems, Kae1 operates as part of a larger macromolecular assembly called KEOPS with Bud32, Cgi121, Gon7 and Pcc1 subunits. Qri7 orthologues function in the mitochondria and may represent the most primitive member of the Kae1/Qri7/YgjD protein family. In accordance with previous findings, we confirm that Qri7 complements Kae1 function and uncover that Qri7 complements the function of all KEOPS subunits in growth, t6A biosynthesis and, to a partial degree, telomere maintenance. These observations suggest that Kae1 provides a core essential function that other subunits within KEOPS have evolved to support. Consistent with this inference, Qri7 alone is sufficient for t6A biosynthesis with Sua5 in vitro. In addition, the 2.9 Å crystal structure of Qri7 reveals a simple homodimer arrangement that is supplanted by the heterodimerization of YgjD with YeaZ in bacteria and heterodimerization of Kae1 with Pcc1 in KEOPS. The partial complementation of telomere maintenance by Qri7 hints that KEOPS has evolved novel functions in higher organisms.
Stem Cells Translational Medicine | 2016
Yangzi Jiang; Youzhi Cai; Wei Zhang; Zi Yin; Changchang Hu; Tong Tong; Ping Lu; Shufang Zhang; Dante Neculai; Rocky S. Tuan; Hongwei Ouyang
Articular cartilage is not a physiologically self‐renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte‐based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte‐derived progenitor cells (CDPCs). The stem cell‐like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low‐density, low‐glucose 2‐dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL‐cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte‐based therapies.
Cardiovascular Research | 2015
Susan Armstrong; Michael G. Sugiyama; Karen Y.Y. Fung; Yizhuo Gao; Changsen Wang; Andrew S. Levy; Paymon M. Azizi; Mark Roufaiel; Su-Ning Zhu; Dante Neculai; Charles Yin; Steffen-Sebastian Bolz; Nabil G. Seidah; Myron I. Cybulsky; Bryan Heit; Warren L. Lee
AIMSnRetention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this notion and elucidating the mechanisms of transcytosis difficult. We developed a novel assay for measuring LDL transcytosis in real time across coronary endothelial cell monolayers; we used this approach to identify the receptor involved.nnnMETHODS AND RESULTSnMurine aortas were perfused ex vivo with LDL and dextran of a smaller molecular radius. LDL (but not dextran) accumulated under the endothelium, indicating that LDL transcytosis occurs in intact vessels. We then confirmed that LDL transcytosis occurs in vitro using human coronary artery endothelial cells. An assay was developed to quantify transcytosis of DiI-LDL in real time using total internal reflection fluorescence microscopy. DiI-LDL transcytosis was inhibited by excess unlabelled LDL, while degradation of the LDL receptor by PCSK9 had no effect. Instead, LDL colocalized partially with the scavenger receptor SR-BI and overexpression of SR-BI increased LDL transcytosis; knockdown by siRNA significantly reduced it. Excess HDL, the canonical SR-BI ligand, significantly decreased LDL transcytosis. Aortas from SR-BI-deficient mice were perfused ex vivo with LDL and accumulated significantly less sub-endothelial LDL compared with wild-type littermates.nnnCONCLUSIONnWe developed an assay to quantify LDL transcytosis across endothelial cells and discovered an unexpected role for SR-BI. Elucidating the mechanisms of LDL transcytosis may identify novel targets for the prevention or therapy of atherosclerosis.