Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danuta Galetzka is active.

Publication


Featured researches published by Danuta Galetzka.


Nucleic Acids Research | 2010

Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns

Eberhard Schneider; Galyna Pliushch; Nady El Hajj; Danuta Galetzka; Alexander Puhl; Martin Schorsch; Katrin Frauenknecht; Thomas Riepert; Achim Tresch; Annette M. Müller; Wiltrud Coerdt; Ulrich Zechner; Thomas Haaf

DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.


Nature Biotechnology | 2004

Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance

Kajohn Boonrod; Danuta Galetzka; Peter D. Nagy; Udo Conrad; Gabi Krczal

Crop loss due to viral diseases is still a major problem for agriculture today. We present a strategy to achieve virus resistance based on the expression of single-chain Fv fragments (scFvs) against a conserved domain in a plant viral RNA-dependent RNA polymerase (RdRp), a key enzyme in virus replication. The selected scFvs inhibited complementary RNA synthesis of different plant virus RdRps in vitro and virus replication in planta. Moreover, the scFvs also bound to the RdRp of the distantly related hepatitis C virus. T1 and T2 progeny of transgenic lines of Nicotiana benthamiana expressing different scFvs either in the cytosol or in the endoplasmic reticulum showed varying degrees of resistance against four plant viruses from different genera, three of which belong to the Tombusviridae family. Virus resistance based on antibodies to RdRps adds another tool to the repertoire for combating plant viruses.


Epigenetics | 2012

Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer

Danuta Galetzka; Tamara Hansmann; Nady El Hajj; Eva Weis; Benjamin Irmscher; Marco Ludwig; Brigitte Schneider-Rätzke; Nicolai Kohlschmidt; Vera Beyer; Oliver Bartsch; Ulrich Zechner; Claudia Spix; Thomas Haaf

We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.


European Journal of Human Genetics | 2007

De novo t(12;17)(p13.3;q21.3) translocation with a breakpoint near the 5′ end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations

Ying Yue; Ruxandra Farcas; Gundula Thiel; Christiane Bommer; Bärbel Grossmann; Danuta Galetzka; Christina Kelbova; Peter Küpferling; Angelika Daser; Ulrich Zechner; Thomas Haaf

A boy with severe mental retardation, funnel chest, bell-shaped thorax, and hexadactyly of both feet was found to have a balanced de novo t(12;17)(p13.3;q21.3) translocation. FISH with BAC clones and long-range PCR products assessed in the human genome sequence localized the breakpoint on chromosome 17q21.3 to a 21-kb segment that lies <30 kb upstream of the HOXB gene cluster and immediately adjacent to the 3′ end of the TTLL6 gene. The breakpoint on chromosome 12 occurred within telomeric hexamer repeats and, therefore, is not likely to affect gene function directly. We propose that juxtaposition of the HOXB cluster to a repetitive DNA domain and/or separation from required cis-regulatory elements gave rise to a position effect.


Epigenetics | 2016

Epigenetic dysregulation in the developing Down syndrome cortex

Nady El Hajj; Marcus Dittrich; Julia Böck; Theo F. J. Kraus; Indrajit Nanda; Tobias Müller; Larissa Seidmann; Tim Tralau; Danuta Galetzka; Eberhard Schneider; Thomas Haaf

ABSTRACT Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3–11 times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.


Gene | 2016

CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development

Eberhard Schneider; Marcus Dittrich; Julia Böck; Indrajit Nanda; Tobias Müller; Larissa Seidmann; Tim Tralau; Danuta Galetzka; Nady El Hajj; Thomas Haaf

Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.


Journal of Cellular Biochemistry | 2006

Expression of DNMT3A transcripts and nucleolar localization of DNMT3A protein in human testicular and fibroblast cells suggest a role for de novo DNA methylation in nucleolar inactivation

Danuta Galetzka; Tim Tralau; Raimund Stein; Thomas Haaf

Transcriptional silencing during differentiation of human male germ cells and serum starvation of human fibroblasts is controlled by epigenetic mechanisms that involve de novo DNA methylation. It is associated with high expression of different trancripts of the DNA methyltransferase 3A (DNMT3A) gene that encode two isoforms with de novo methyltransferase activity and one without catalytic activity. Western blots revealed that DNMT3A protein (with catalytic domain) is present at low levels in several tissues and at increased levels in testicular cells and growth‐arrested fibroblasts. Immunofluorescence experiments localized DNMT3A to discrete nucleolar foci in B spermatogonia and resting fibroblasts. The data here suggest a role for de novo DNA methylation in nucleolar inactivation. J. Cell. Biochem. 98: 885–894, 2006.


Behavioral and Brain Functions | 2013

A boy with homozygous microdeletion of NEUROG1 presents with a congenital cranial dysinnervation disorder [Moebius syndrome variant]

Julia Schröder; Anne K. Läßig; Danuta Galetzka; Angelika Peters; John C. Castle; Stefan Diederich; Ulrich Zechner; Wibke Müller-Forell; Annerose Keilmann; Oliver Bartsch

BackgroundWe report on a 6-year-old Turkish boy with profound sensorineural deafness, balance disorder, severe disorder of oral motor function, and mild developmental delay. Further findings included scaphocephaly, plagiocephaly, long palpebral fissures, high narrow palate, low-set posteriorly rotated ears, torticollis, hypoplastic genitalia and faulty foot posture. Parents were consanguineous.Methods and resultsComputed tomography and magnetic resonance imaging showed bilateral single widened cochlear turn, narrowing of the internal auditory canal, and bilateral truncation of the vestibulo-cochlear nerve. Microarray analysis and next generation sequencing showed a homozygous deletion of chromosome 5q31.1 spanning 115.3 kb and including three genes: NEUROG1 (encoding neurogenin 1), DCNP1 (dendritic cell nuclear protein 1, C5ORF20) and TIFAB (TIFA-related protein). The inability to chew and swallow, deafness and balance disorder represented congenital palsies of cranial nerves V (trigeminal nerve) and VIII (vestibulo-cochlear nerve) and thus a congenital cranial dysinnervation disorder.ConclusionsBased on reported phenotypes of neurog1 null mutant mice and other vertebrates, we strongly propose NEUROG1 as the causative gene in this boy. The human NEUROG1 resides within the DFNB60 locus for non-syndromic autosomal recessive deafness on chromosome 5q22-q31, but linkage data have excluded it from being causative in the DFNB60 patients. Given its large size (35 Mb, >100 genes), the 5q22-q31 area could harbor more than one deafness gene. We propose NEUROG1 as a new gene for syndromic autosomal recessive hearing loss and congenital cranial dysinnervation disorder including cranial nerves V and VIII.


Journal of Cellular Biochemistry | 2007

Expression of somatic DNA repair genes in human testes

Danuta Galetzka; Eva Weis; Nicolai Kohlschmidt; Oliver Bitz; Raimund Stein; Thomas Haaf

Meiosis is the key process for recombination and reduction of the diploid chromosome set to a haploid one. Many genes that have been found in yeast or mouse models to play a role in meiosis are also important for the repair of DNA damage in somatic cells. To study the DNA repair gene transcriptome during male germ cell development, we have developed a specialized cDNA microarray with 181 human genes which are involved in different somatic DNA repair pathways and/or cell cycle control and 45 control house‐keeping genes. This DNA repair gene chip was used to quantify the mRNA expression levels in three human testes samples versus a fibroblast RNA pool. Two hundred twenty genes on the chip (including house‐keeping genes) showed detectable expression levels in adult testes. Sixty‐four DNA repair‐ and cell cycle‐associated genes showed higher expression levels in testicular cells than in mitotically dividing fibroblasts and, therefore, are likely to be implicated in meiosis. The microarray results of 17 genes with increased expression levels were validated with reverse Northern blots or real‐time quantitative RT PCR. Systematic analyses of the meiotic DNA repair gene transcriptome may provide new insights into the genetics of male (in)fertility. J. Cell. Biochem. 100: 1232–1239, 2007.


Cytogenetic and Genome Research | 2008

Humans and chimpanzees differ in their cellular response to DNA damage and non-coding sequence elements of DNA repair-associated genes

Eva Weis; Danuta Galetzka; Holger Herlyn; E. Schneider; Thomas Haaf

Compared to humans, chimpanzees appear to be less susceptible to many types of cancer. Because DNA repair defects lead to accumulation of gene and chromosomal mutations, species differences in DNA repair are one plausible explanation. Here we analyzed the repair kinetics of human and chimpanzee cells after cisplatin treatment and irradiation. Dot blots for the quantification of single-stranded (ss) DNA repair intermediates revealed a biphasic response of human and chimpanzee lymphoblasts to cisplatin-induced damage. The early phase of DNA repair was identical in both species with a peak of ssDNA intermediates at 1 h after DNA damage induction. However, the late phase differed between species. Human cells showed a second peak of ssDNA intermediates at 6 h, chimpanzee cells at 5 h. One of four analyzed DNA repair-associated genes, UBE2A, was differentially expressed in human and chimpanzee cells at 5 h after cisplatin treatment. Immunofluorescent staining of γH2AX foci demonstrated equally high numbers of DNA strand breaks in human and chimpanzee cells at 30 min after irradiation and equally low numbers at 2 h. However, at 1 h chimpanzee cells had significantly less DNA breaks than human cells. Comparative sequence analyses of approximately 100 DNA repair-associated genes in human and chimpanzee revealed 13% and 32% genes, respectively, with evidence for an accelerated evolution in promoter regions and introns. This is strikingly contrasting to the 3% of DNA repair-associated genes with positive selection in the coding sequence. Compared to the rhesus macaque as an outgroup, chimpanzees have a higher accelerated evolution in non-coding sequences than humans. The TRF1-interacting, ankyrin-related ADP-ribose polymerase (TNKS) gene showed an accelerated intraspecific evolution among humans. Our results are consistent with the view that chimpanzee cells repair different types of DNA damage faster than human cells, whereas the overall repair capacity is similar in both species. Genetic differences in non-coding sequence elements may affect gene regulation in the DNA repair network and thus contribute to species differences in DNA repair and cancer susceptibility.

Collaboration


Dive into the Danuta Galetzka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge