Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danuta Mizgalska is active.

Publication


Featured researches published by Danuta Mizgalska.


PLOS Pathogens | 2013

Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD)

Katarzyna Maresz; Annelie Hellvard; Aneta Sroka; Karina Adamowicz; Ewa Bielecka; Joanna Koziel; Katarzyna Gawron; Danuta Mizgalska; Katarzyna Marcińska; Małgorzata Benedyk; Krzysztof Pyrc; Anne-Marie Quirke; Roland Jonsson; Saba Alzabin; Patrick J. Venables; Ky-Anh Nguyen; Piotr Mydel; Jan Potempa

Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis.


FEBS Journal | 2009

Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA

Danuta Mizgalska; Paulina Węgrzyn; Krzysztof Murzyn; Aneta Kasza; Aleksander Koj; Jacek Jura; Barbara Jarząb; Jolanta Jura

In human monocyte‐derived macrophages, the MCPIP gene (monocyte chemoattractant protein‐induced protein) is strongly activated by interleukin‐1β (IL‐1β). Using bioinformatics, a PIN domain was identified, spanning amino acids 130‐280; such domains are known to possess structural features of RNases. Recently, RNase properties of MCPIP were confirmed on transcripts coding for interleukins IL‐6 and IL‐12p40. Here we present evidence that siRNA‐mediated inhibition of the MCPIP gene expression increases the level of the IL‐1β transcript in cells stimulated with LPS, whereas overexpression of MCPIP exerts opposite effects. Cells with an increased level of wild‐type MCPIP showed lower levels of IL‐1β mRNA. However, this was not observed when mutant forms of MCPIP, either entirely lacking the PIN domain or with point mutations in this domain, were used. The results of experiments with actinomycin D indicate that lower levels of IL‐1β mRNA are due to shortening of the IL‐1β transcript half‐life, and are not related to the presence of AU‐rich elements in the 3′ UTR. The interaction of the MCPIP with transcripts of both IL‐1β and MCPIP observed in an RNA immunoprecipitation assay suggests that this novel RNase may be involved in the regulation of expression of several genes.


FEBS Journal | 2009

Regulatory feedback loop between NF‐κB and MCP‐1‐induced protein 1 RNase

Lukasz Skalniak; Danuta Mizgalska; Adrian Zarebski; Paulina Wyrzykowska; Aleksander Koj; Jolanta Jura

A novel gene ZC3H12A, encoding MCP‐1‐induced protein 1 (MCPIP), was recently identified in human peripheral blood monocytes treated with monocyte chemotactic protein 1 (MCP‐1) and in human monocyte‐derived macrophages stimulated with interleukin (IL)‐1β. These experiments revealed that the gene undergoes rapid and potent transcription induction upon stimulation with proinflammatory molecules, such as MCP‐1, IL‐1β, tumour necrosis factor α and lipopolysaccharide. Here we show that the induction of ZC3H12A by IL‐1β is predominantly NF‐κB‐dependent because inhibition of this signalling pathway results in the impairment of ZC3H12A transcription activation. Our results indicate the presence of an IL‐1β‐responding region within the second intron of the ZC3H12A gene, which contains four functional NF‐κB‐binding sites. Therefore, we propose that this transcription enhancer transduces a ZC3H12A transcription‐inducing signal after IL‐1β stimulation. Recent reports suggest that MCPIP acts as a negative regulator of inflammatory processes because it is engaged in the degradation of transcripts coding for certain proinflammatory cytokines. Our observations provide evidence for a novel negative feedback loop in the activation of NF‐κB and point to potential significance of MCPIP in the treatment of various pathological states, such as diabetes or cancer that involve disturbances in the functioning of the NF‐κB system.


BMC Molecular Biology | 2010

Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression

Aneta Kasza; Paulina Wyrzykowska; Irena Horwacik; Piotr Tymoszuk; Danuta Mizgalska; Karren Palmer; Hanna Rokita; Andrew D. Sharrocks; Jolanta Jura

BackgroundMCPIP is a novel CCCH zinc finger protein described as an RNase engaged in the regulation of immune responses. The regulation of expression of the gene coding for MCPIP - ZC3H12A is poorly explored.ResultsHere we report that the proinflammatory cytokine IL-1β rapidly induces the synthesis of MCPIP in primary monocyte-derived macrophages and HepG2 cells. This up-regulation takes place through the MAP kinase pathway and following activation of the transcription factor Elk-1. Using a ZC3H12A reporter construct we have shown that a ZC3H12A promoter region, stretching from -76 to +60, mediates activation by IL-1β. This region contains binding sites for Elk-1 and its partner SRF. Chromatin immunoprecipitation analysis confirms in vivo binding of both transcription factors to this region of the ZC3H12A promoter.ConclusionsWe conclude that the transcription factor Elk-1 plays an important role in the activation of ZC3H12A expression in response to IL-1β stimulation.


Journal of Biological Chemistry | 2014

Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity.

Ewa Bielecka; Carsten Scavenius; Tomasz Kantyka; Monika Jusko; Danuta Mizgalska; Borys Szmigielski; Barbara Potempa; Jan J. Enghild; Eric R. Prossnitz; Anna M. Blom; Jan Potempa

Background: Pathogenic bacteria avoid killing by phagocytes through inhibition of C5a chemotactic activity. Results: Periodontopathogen Porphyromonas gingivalis expresses unique peptidylarginine deiminase, which inactivates C5a by converting C-terminal arginine to citrulline. Conclusion: Citrullination of C5a constitutes a novel virulence strategy that may contribute to immune evasion by P. gingivalis. Significance: P. gingivalis peptidylarginine deiminase is a potential target for drug development. Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.


Scientific Reports | 2015

Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase

Theodoros Goulas; Danuta Mizgalska; Irene Garcia-Ferrer; Tomasz Kantyka; Tibisay Guevara; Borys Szmigielski; Aneta Sroka; Claudia Millán; Isabel Usón; Florian Veillard; Barbara Potempa; Piotr Mydel; Maria Solà; Jan Potempa; F. Xavier Gomis-Rüth

Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.


Frontiers in Microbiology | 2015

KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure

Miroslaw Ksiazek; Danuta Mizgalska; Sigrum Eick; Ida B. Thøgersen; Jan J. Enghild; Jan Potempa

Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium.


Journal of Biological Chemistry | 2015

Miropin, a novel bacterial serpin from the periodontopathogen Tannerella forsythia, inhibits a broad range of proteases by using different peptide bonds within the reactive center loop

Miroslaw Ksiazek; Danuta Mizgalska; Jan J. Enghild; Carsten Scavenius; Ida B. Thøgersen; Jan Potempa

Background: Serpins are uncommon in bacteria; little is known about their function. Results: Serpin from T. forsythia (miropin) inhibits a broad array of proteases with divergent specificities. Conclusion: Miropin may allow T. forsythia to dwell in a highly proteolytic environment. Significance: Miropin is the first pathogen-derived serpin with the unusual ability to efficiently inhibit different proteases at several active sites. All prokaryotic genes encoding putative serpins identified to date are found in environmental and commensal microorganisms, and only very few prokaryotic serpins have been investigated from a mechanistic standpoint. Herein, we characterized a novel serpin (miropin) from the human pathogen Tannerella forsythia, a bacterium implicated in initiation and progression of human periodontitis. In contrast to other serpins, miropin efficiently inhibited a broad range of proteases (neutrophil and pancreatic elastases, cathepsin G, subtilisin, and trypsin) with a stoichiometry of inhibition of around 3 and second-order association rate constants that ranged from 2.7 × 104 (cathepsin G) to 7.1 × 105 m−1s−1 (subtilisin). Inhibition was associated with the formation of complexes that were stable during SDS-PAGE. The unusually broad specificity of miropin for target proteases is achieved through different active sites within the reactive center loop upstream of the P1-P1′ site, which was predicted from an alignment of the primary structure of miropin with those of well studied human and prokaryotic serpins. Thus, miropin is unique among inhibitory serpins, and it has apparently evolved the ability to inhibit a multitude of proteases at the expense of a high stoichiometry of inhibition and a low association rate constant. These characteristics suggest that miropin arose as an adaptation to the highly proteolytic environment of subgingival plaque, which is exposed continually to an array of host proteases in the inflammatory exudate. In such an environment, miropin may function as an important virulence factor by protecting bacterium from the destructive activity of neutrophil serine proteases. Alternatively, it may act as a housekeeping protein that regulates the activity of endogenous T. forsythia serine proteases.


Infection and Immunity | 2014

Citrullination and Proteolytic Processing of Chemokines by Porphyromonas gingivalis

Eva Moelants; Gitte Loozen; Anneleen Mortier; Erik Martens; Ghislain Opdenakker; Danuta Mizgalska; Borys Szmigielski; Jan Potempa; Jo Van Damme; Wim Teughels; Paul Proost

ABSTRACT The outgrowth of Porphyromonas gingivalis within the inflammatory subgingival plaque is associated with periodontitis characterized by periodontal tissue destruction, loss of alveolar bone, periodontal pocket formation, and eventually, tooth loss. Potential virulence factors of P. gingivalis are peptidylarginine deiminase (PPAD), an enzyme modifying free or peptide-bound arginine to citrulline, and the bacterial proteases referred to as gingipains (Rgp and Kgp). Chemokines attract leukocytes during inflammation. However, posttranslational modification (PTM) of chemokines by proteases or human peptidylarginine deiminases may alter their biological activities. Since chemokine processing may be important in microbial defense mechanisms, we investigated whether PTM of chemokines by P. gingivalis enzymes occurs. Upon incubation of interleukin-8 (IL-8; CXCL8) with PPAD, only minor enzymatic citrullination was detected. In contrast, Rgp rapidly cleaved CXCL8 in vitro. Subsequently, different P. gingivalis strains were incubated with the chemokine CXCL8 or CXCL10 and their PTMs were investigated. No significant CXCL8 citrullination was detected for the tested strains. Interestingly, although considerable differences in the efficiency of CXCL8 degradation were observed with full cultures of various strains, similar rates of chemokine proteolysis were exerted by cell-free culture supernatants. Sequencing of CXCL8 incubated with supernatant or bacteria showed that CXCL8 is processed into its more potent forms consisting of amino acids 6 to 77 and amino acids 9 to 77 (the 6-77 and 9-77 forms, respectively). In contrast, CXCL10 was entirely and rapidly degraded by P. gingivalis, with no transient chemokine forms being observed. In conclusion, this study demonstrates PTM of CXCL8 and CXCL10 by gingipains of P. gingivalis and that strain differences may particularly affect the activity of these bacterial membrane-associated proteases.


Scientific Reports | 2016

The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain

Iñaki de Diego; Miroslaw Ksiazek; Danuta Mizgalska; Lahari Koneru; Przemyslaw Golik; Borys Szmigielski; Magdalena Nowak; Zuzanna Nowakowska; Barbara Potempa; John Houston; Jan J. Enghild; Ida B. Thøgersen; Jinlong Gao; Ann H. Kwan; Jill Trewhella; Grzegorz Dubin; F. Xavier Gomis-Rüth; Ky-Anh Nguyen; Jan Potempa

In the recently characterized Type IX Secretion System (T9SS), the conserved C-terminal domain (CTD) in secreted proteins functions as an outer membrane translocation signal for export of virulence factors to the cell surface in the Gram-negative Bacteroidetes phylum. In the periodontal pathogen Porphyromonas gingivalis, the CTD is cleaved off by PorU sortase in a sequence-independent manner, and anionic lipopolysaccharide (A-LPS) is attached to many translocated proteins, thus anchoring them to the bacterial surface. Here, we solved the atomic structure of the CTD of gingipain B (RgpB) from P. gingivalis, alone and together with a preceding immunoglobulin-superfamily domain (IgSF). The CTD was found to possess a typical Ig-like fold encompassing seven antiparallel β-strands organized in two β-sheets, packed into a β-sandwich structure that can spontaneously dimerise through C-terminal strand swapping. Small angle X-ray scattering (SAXS) revealed no fixed orientation of the CTD with respect to the IgSF. By introducing insertion or substitution of residues within the inter-domain linker in the native protein, we were able to show that despite the region being unstructured, it nevertheless is resistant to general proteolysis. These data suggest structural motifs located in the two adjacent Ig-like domains dictate the processing of CTDs by the T9SS secretion pathway.

Collaboration


Dive into the Danuta Mizgalska's collaboration.

Top Co-Authors

Avatar

Jan Potempa

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Bielecka

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Xavier Gomis-Rüth

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge