Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danuta S. Kalinowski is active.

Publication


Featured researches published by Danuta S. Kalinowski.


Pharmacological Reviews | 2005

The Evolution of Iron Chelators for the Treatment of Iron Overload Disease and Cancer

Danuta S. Kalinowski; Des R. Richardson

The evolution of iron chelators from a range of primordial siderophores and aromatic heterocyclic ligands has lead to the formation of a new generation of potent and efficient iron chelators. For example, various siderophore analogs and synthetic ligands, including ICL670A [4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid], 4′-hydroxydesazadesferrithiocin, and Triapine, have been developed from predecessors and illustrate potent iron-mobilizing or antineoplastic activities. This review focuses on the evolution of iron chelators from initial lead compounds through to the development of novel chelating agents, many of which show great potential to be clinically applied in the treatment of iron overload disease and cancer.


Biochimica et Biophysica Acta | 2009

Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents.

Des R. Richardson; Danuta S. Kalinowski; S. Lau; Patric J. Jansson; David B. Lovejoy

Cancer contributes to 50% of deaths worldwide and new anti-tumour therapeutics with novel mechanisms of actions are essential to develop. Metabolic inhibitors represent an important class of anti-tumour agents and for many years, agents targeting the nutrient folate were developed for the treatment of cancer. This is because of the critical need of this factor for DNA synthesis. Similarly to folate, Fe is an essential cellular nutrient that is critical for DNA synthesis. However, in contrast to folate, there has been limited effort applied to specifically design and develop Fe chelators for the treatment of cancer. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) group of ligands that demonstrate marked and selective anti-tumour activity in vitro and also in vivo against a wide spectrum of tumours. Indeed, administration of these compounds to mice did not induce whole body Fe-depletion or disturbances in haematological or biochemical indices due to the very low doses required. The mechanism of action of these ligands includes alterations in expression of molecules involved in cell cycle control and metastasis suppression, as well as the generation of redox-active Fe complexes. This review examines the alterations in Fe metabolism in tumour cells and the systematic development of novel aroylhydrazone and thiosemicarbazone Fe chelators for cancer treatment.


Clinical Cancer Research | 2006

Chelators at the Cancer Coalface: Desferrioxamine to Triapine and Beyond

Yu Yu; John Wong; David B. Lovejoy; Danuta S. Kalinowski; Des R. Richardson

The importance of iron and copper in cancer biology has been well established. Iron plays a fundamental role in cellular proliferation and copper has been shown to be a significant cofactor for angiogenesis. Early observations with the chelator used for the treatment of iron overload, desferrioxamine, showed that it had promise as an anticancer agent. These results sparked great interest in the possibility of developing more effective iron chelators for cancer therapy. The recent entry into clinical trials of the iron-binding drug, Triapine, provides evidence of the potential of this antitumor strategy. Likewise, chelators originally designed to treat disorders of copper overload, such as penicillamine, trientine, and tetrathiomolybdate, have also emerged as potential anticancer drugs, as they are able to target the key angiogenic cofactor, copper. In this review, we will discuss the development of these and other chelators that show potential as anticancer agents.


Journal of Medicinal Chemistry | 2009

2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: redox activity, iron complexation and characterization of their antitumor activity.

Des R. Richardson; Danuta S. Kalinowski; Vera Richardson; Philip C. Sharpe; David B. Lovejoy; Mohammad Shariful Islam; Paul V. Bernhardt

Through systematic structure-activity studies of the 2-benzoylpyridine thiosemicarbazone (HBpT), 2-(3-nitrobenzoyl)pyridine thiosemicarbazone (HNBpT) and dipyridylketone thiosemicarbazone (HDpT) series of iron (Fe) chelators, we identified structural features necessary to form Fe complexes with potent anticancer activity (J. Med. Chem. 2007, 50, 3716-3729). In this investigation, we generated the related 2-acetylpyridine thiosemicarbazone (HApT) analogues to examine the influence of the methyl group at the imine carbon. Four of the six HApT chelators had potent antitumor activity (IC(50): 0.001-0.002 microM) and Fe chelation efficacy that was similar to the most effective HBpT and HDpT ligands. The HApT Fe complexes had the lowest Fe(III/II) redox potentials of any thiosemicarbazone series we have generated. This property, in combination with their ability to effectively chelate cellular Fe, make the HApT series one of the most potent antiproliferative agents developed by our group.


Journal of Medicinal Chemistry | 2009

Iron chelators of the dipyridylketone thiosemicarbazone class: Precomplexation and transmetalation effects on anticancer activity

Paul V. Bernhardt; Philip C. Sharpe; Mohammad Shariful Islam; David B. Lovejoy; Danuta S. Kalinowski; Des R. Richardson

We previously reported a series of di-2-pyridylketone thiosemicarbazone (HDpT) chelators that showed marked and selective antitumor activity (Whitnall, M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 14901-14906). To further understand their biological efficacy, we report the characterization and activity of their Mn(II), Co(III), Ni(II), Cu(II), and Zn(II) complexes. The X-ray crystal structures of four divalent (Mn, Ni, Cu, and Zn) and one trivalent (Fe) complexes are reported. Electrochemistry shows the Fe(III/II) and Cu(II/I) potentials of the complexes may be redox-active within cells. Stability constants were also determined for the Mn(II), Ni(II), Cu(II), and Zn(II) complexes. All divalent complexes underwent transmetalation upon encountering Fe(II), to form low spin ferrous complexes. Importantly, the divalent Mn(II), Ni(II), Cu(II), and Zn(II) complexes of the HDpT analogues are equally active in preventing proliferation as their ligands, suggesting the complexes act as lipophilic vehicles facilitating intracellular delivery of the free ligand upon metal dissociation.


Frontiers in Physiology | 2014

Unraveling the mysteries of serum albumin—more than just a serum protein

Angelica M. Merlot; Danuta S. Kalinowski; Des R. Richardson

Serum albumin is a multi-functional protein that is able to bind and transport numerous endogenous and exogenous compounds. The development of albumin drug carriers is gaining increasing importance in the targeted delivery of cancer therapy, particularly as a result of the market approval of the paclitaxel-loaded albumin nanoparticle, Abraxane®. Considering this, there is renewed interest in isolating and characterizing albumin-binding proteins or receptors on the plasma membrane that are responsible for albumin uptake. Initially, the cellular uptake and intracellular localization of albumin was unknown due to the large confinement of the protein within the vascular and interstitial compartment of the body. Studies have since assessed the intracellular localization of albumin in order to understand the mechanisms and pathways responsible for its uptake, distribution and catabolism in multiple tissues, and this is reviewed herein.


Biochimica et Biophysica Acta | 2015

Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease.

Darius J.R. Lane; Angelica M. Merlot; Michael Li-Hsuan Huang; Dong-Hun Bae; Patric J. Jansson; Sumit Sahni; Danuta S. Kalinowski; Des R. Richardson

Iron is a crucial transition metal for virtually all life. Two major destinations of iron within mammalian cells are the cytosolic iron-storage protein, ferritin, and mitochondria. In mitochondria, iron is utilized in critical anabolic pathways, including: iron-storage in mitochondrial ferritin, heme synthesis, and iron-sulfur cluster (ISC) biogenesis. Although the pathways involved in ISC synthesis in the mitochondria and cytosol have begun to be characterized, many crucial details remain unknown. In this review, we discuss major aspects of the journey of iron from its initial cellular uptake, its modes of trafficking within cells, to an overview of its downstream utilization in the cytoplasm and within mitochondria. The understanding of mitochondrial iron processing and its communication with other organelles/subcellular locations, such as the cytosol, has been elucidated by the analysis of certain diseases e.g., Friedreichs ataxia. Increased knowledge of the molecules and their mechanisms of action in iron processing pathways (e.g., ISC biogenesis) will shape the investigation of iron metabolism in human health and disease.


Journal of Medicinal Chemistry | 2012

Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo

David B. Lovejoy; Danae M. Sharp; Nicole Seebacher; Peyman Obeidy; Thomas Prichard; Christian Stefani; Maram T. Basha; Philip C. Sharpe; Patric J. Jansson; Danuta S. Kalinowski; Paul V. Bernhardt; Des R. Richardson

We developed a series of second-generation di-2-pyridyl ketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) ligands to improve the efficacy and safety profile of these potential antitumor agents. Two novel DpT analogues, Dp4e4mT and DpC, exhibited pronounced and selective activity against human lung cancer xenografts in vivo via the intravenous and oral routes. Importantly, these analogues did not induce the cardiotoxicity observed at high nonoptimal doses of the first-generation DpT analogue, Dp44mT. The Cu(II) complexes of these ligands exhibited potent antiproliferative activity having redox potentials in a range accessible to biological reductants. The activity of the copper complexes of Dp4e4mT and DpC against lung cancer cells was synergistic in combination with gemcitabine or cisplatin. It was demonstrated by EPR spectroscopy that dimeric copper compounds of the type [CuLCl](2), identified crystallographically, dissociate in solution to give monomeric 1:1 Cu:ligand complexes. These monomers represent the biologically active form of the complex.


Antioxidants & Redox Signaling | 2013

Novel Chelators for Cancer Treatment: Where Are We Now?

Angelica M. Merlot; Danuta S. Kalinowski; Des R. Richardson

SIGNIFICANCE Under normal circumstances, cellular iron levels are tightly regulated due to the potential toxic effects of this metal ion. There is evidence that tumors possess altered iron homeostasis, which is mediated by the perturbed expression of iron-related proteins, for example, transferrin receptor 1, ferritin and ferroportin 1. The de-regulation of iron homeostasis in cancer cells reveals a particular vulnerability to iron-depletion using iron chelators. In this review, we examine the absorption of iron from the gut; its transport, metabolism, and homeostasis in mammals; and the molecular pathways involved. Additionally, evidence for alterations in iron processing in cancer are described along with the perturbations in other biologically important transition metal ions, for example, copper(II) and zinc(II). These changes can be therapeutically manipulated by the use of novel chelators that have recently been shown to be highly effective in terms of inhibiting tumor growth. RECENT ADVANCES Such chelators include those of the thiosemicarbazone class that were originally thought to target only ribonucleotide reductase, but are now known to have multiple effects, including the generation of cytotoxic radicals. CRITICAL ISSUES Several chelators have shown marked anti-tumor activity in vivo against a variety of solid tumors. An important aspect is the toxicology and the efficacy of these agents in clinical trials. FUTURE DIRECTIONS As part of the process of the clinical assessment of the new chelators, an extensive toxicological assessment in multiple animal models is essential for designing appropriate dosing protocols in humans.


Current Topics in Medicinal Chemistry | 2011

The Medicinal Chemistry of Novel Iron Chelators for the Treatment of Cancer

Zaklina Kovacevic; Danuta S. Kalinowski; David B. Lovejoy; Yu Yu; Yohan Suryo Rahmanto; Phillip C. Sharpe; Paul V. Bernhardt; Des R. Richardson

Cancer is one of the leading causes of death worldwide and there is an increasing need for novel anti-tumor therapeutics with greater selectivity and potency. A new strategy in the treatment of cancer has focused on targeting an essential cell metabolite, iron (Fe). Iron is vital for cell growth and metabolism, forming a crucial component of the active site of ribonucleotide reductase (RR), the rate-limiting enzyme in DNA synthesis. Cancer cells in particular require large amounts of Fe to proliferate, making them more susceptible to the Fe deficiency caused by Fe chelators. Beginning with primordial siderophores, Fe chelators have since evolved to a new generation of potent and efficient anti-cancer agents. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) ligands that demonstrate marked and selective anti-tumor activity both in vitro and in vivo against a wide spectrum of tumors. The mechanism of action of these novel ligands includes alterations in the expression of key regulatory molecules as well as the generation of redox active Fe complexes. Interestingly, non-synthetic Fe chelators including silybin and curcumin, both of which are derived from plants, also have vast potential in the treatment of cancer. This review explores the development of novel Fe chelators for the treatment of cancer and their mechanisms of action.

Collaboration


Dive into the Danuta S. Kalinowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge