Dany Gaillard
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dany Gaillard.
The FASEB Journal | 2008
Dany Gaillard; Fabienne Laugerette; Nicolas Darcel; Abdelghani El-Yassimi; Patricia Passilly-Degrace; Aziz Hichami; Naim Akhtar Khan; Jean-Pierre Montmayeur; Philippe Besnard
The sense of taste informs the body about the quality of ingested foods. Tastant‐mediated signals are generated by a rise in free intracellular calcium levels ([Ca2+]i) in the taste bud cells and then are transferred to the gustatory area of brain via connections between the gustatory nerves (chorda tym‐ pani and glossopharyngeal nerves) and the nucleus of solitary tract in the brain stem. We have recently shown that lingual CD36 contributes to fat preference and early digestive secretions in the mouse. We show here that 1) the induction of an increase in [Ca2+]i by linoleic acid is CD36‐dependent in taste receptor cells, 2) the spontaneous preference for or conversely con ditioned aversion to linoleic acid requires intact gusta tory nerves, and 3) the activation of gustatory neurons in the nucleus of the solitary tract elicited by a linoleic acid deposition on the tongue in wild‐type mice cannot be reproduced in CD36‐null animals. We conclude that the CD36‐mediated perception of long‐chain fatty acids involves the gustatory pathway, suggesting that the mouse may have a “taste“ for fatty foods. This system would constitute a potential physiological advantage under conditions of food scarcity by leading the mouse to select and absorb fatty foods. However, it might also lead to a risk of obesity and associated diseases in a context of constantly abundant food.—Gaillard, D., Laugerette, F., Darcel, N., El‐Yassimi, A., Passilly‐De grace, P., Hichami, A., Khan, N. A., Montmayeur, J.‐P., Besnard, P. The gustatory pathway is involved in CD36‐ mediated orosensory perception of long‐chain fatty acids in the mouse. FASEB J. 22, 1458–1468 (2008)
PLOS ONE | 2011
Céline Martin; Patricia Passilly-Degrace; Dany Gaillard; Jean-François Merlin; M. Chevrot; Philippe Besnard
Background Recent studies in rodents and humans suggest that the chemoreception of long-chain fatty acids (LCFA) in oral cavity is involved in the spontaneous preference for fatty foods and might contribute to the obesity risk. CD36 and GPR120 are LCFA receptors identified in rodent taste bud cells. The fact that CD36 or GPR120 gene inactivation leads to a decrease in the preference for lipids raises the question of the respective role(s) played by these gustatory lipid-sensor candidates. Methodology/Principal Findings Using a combination of biochemical, nutritional and behavioural studies in wild-type, CD36+/−and CD36−/− mice, it was found that: 1°) CD36 and GPR120 display different diurnal rhythms in the gustatory circumvallate papillae, CD36 mRNA levels being down-regulated during the dark period in contrast to GPR120, 2°) this change is due to food intake and strictly dependent of the presence of lipids in the diet, 3°) CD36 protein levels are also rapidly but transiently decreased by the food intake, a two-fold drop in CD36 protein levels being found 1 h after refeeding, followed by a progressive return to the pre-prandial values, 4°) this down-regulation, which has a post-transcriptional origin, seems sufficient to alter the spontaneous fat preference, independently to change in the GPR120 gene expression. Conclusions/Significance In contrast to GPR120, CD36 appears to be a food-sensitive lipid sensor in the gustatory circumvallate papillae. Lipid-mediated change in lingual CD36 expression might modulate the motivation for fat during a meal, initially high and then gradually decreasing secondary to the food intake. This short-term lipid-mediated effect is reminiscent of sensory-specific satiety. These findings, which highlight the role played by CD36 in the oro-sensory perception of dietary lipids, raise the possibility of novel pharmacological strategies to modify attraction for fatty foods and decrease obesity risks.
Annals of the New York Academy of Sciences | 2008
Dany Gaillard; Patricia Passilly-Degrace; Philippe Besnard
Obesity is recognized as a worldwide health problem. Overconsumption of fatty foods contributes significantly to this phenomenon. Rodents, like humans, display preferences for lipid‐rich foods. Rodents thus provide useful models to explore the mechanisms responsible for this complex feeding behavior resulting from the integration of multiple oral and postoral signals. Over the last decades, the lipid‐mediated regulation of food intake has received considerable attention. By contrast, orosensory lipid perception was long thought to involve only textural and olfactory cues. Recent findings have challenged this limited viewpoint. These recent data strongly suggest that the sense of taste also plays significant roles in the spontaneous preference for fatty foods. This paper provides a brief overview of postoral regulation of food intake by lipids and then highlights recent data suggesting the existence of a “fatty taste” which might contribute to lipid overeating and hence to the risk of obesity.
Gut | 2006
Charles Thomas; Jean-François Landrier; Dany Gaillard; Jacques Grober; Marie-Claude Monnot; Anne Athias; Philippe Besnard
Background and aims: Faecal bile acid elimination greatly contributes to cholesterol homeostasis. Synthesised from cholesterol in the liver, bile acids are actively reclaimed in the ileum by the apical sodium dependent bile acid transporter (ASBT). Although the expression level of ASBT affects body cholesterol balance, the impact of cholesterol on ASBT gene expression remains unclear. In this study, the effect of cholesterol on ASBT expression and ileal bile acid uptake was explored in vivo and in vitro. Methods: ASBT gene expression was assessed by real time quantitative polymerase chain reaction and northern or western blotting, or both, in mice subjected to a 2% cholesterol diet for two weeks, in mouse ileal explants, or in human enterocyte-like Caco-2 cells cultured in sterol enriched or depleted media. Bile acid uptake was determined by measuring [3H]-taurocholic acid influx into in situ isolated ileal loops from mice or into differentiated Caco-2 cells. Molecular analysis of mouse and human ASBT promoters was undertaken with reporter assays, site directed mutagenesis, and electrophoretic mobility shift assays. Results: In mice, cholesterol enriched diet triggered a downregulation of ASBT expression (mRNA and protein), a fall in ileal bile acid uptake, and a rise in the faecal excretion of bile acids. This effect was direct as it was reproduced ex vivo using mouse ileal explants and in vitro in differentiated Caco-2 cells. Conclusions: This regulation, which involves an original partnership between SREBP-2 and HNF-1α transcription factors, affects ileal bile acid recycling and thus might participate in the maintenance of body cholesterol homeostasis.
PLOS Genetics | 2015
Dany Gaillard; Mingang Xu; Fei Liu; Sarah E. Millar; Linda A. Barlow
Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.
Genesis | 2011
Dany Gaillard; Linda A. Barlow
Wnt/β‐catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β‐catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β‐galactosidase. Using in situ hybridization, we showed that β‐catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β‐catenin activity is significantly reduced in taste buds of 25‐week‐old mice compared with 10‐week‐old animals. Our data suggest that Wnt/β‐catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. genesis 49:295–306, 2011.
Results and problems in cell differentiation | 2008
Patricia Passilly-Degrace; Dany Gaillard; Philippe Besnard
Obesity constitutes a major public health problem for the twenty-first century, with its epidemic spread worldwide, particularly in children. The overconsumption of fatty foods greatly contributes to this phenomenon. Rodents and humans display a spontaneous preference for lipid-rich foods. However, the molecular mechanisms underlying this pattern of eating behaviour in mammals remain unclear. The orosensory perception of dietary lipids was long thought to involve only textural and olfactory cues. Recent findings challenge this limited viewpoint, strongly suggesting that the sense of taste also plays a significant role in dietary lipid perception and might therefore be involved in the preference for fatty foods and obesity. This minireview analyses recent data relating to the molecular mechanisms and physiological consequences of this means of orosensory lipid perception.
Nature Communications | 2017
Mingang Xu; Jeremy Horrell; Melinda Snitow; Jiawei Cui; Heather Gochnauer; Camille M. Syrett; Staci Kallish; John T. Seykora; Fei Liu; Dany Gaillard; Jonathan P. Katz; Klaus H. Kaestner; Brooke Levin; Corinne Mansfield; Jennifer E. Douglas; Beverly J. Cowart; Michael Tordoff; Fang Liu; Xuming Zhu; Linda A. Barlow; Adam I. Rubin; John A. McGrath; Edward E. Morrisey; Emily Y. Chu; Sarah E. Millar
Human WNT10A mutations are associated with developmental tooth abnormalities and adolescent onset of a broad range of ectodermal defects. Here we show that β-catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails and sweat ducts. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by loss of the transcription factor KLF4. We find that β-catenin interacts directly with region-specific LEF/TCF factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity. Our data identify WNT10A as a critical ligand controlling adult epithelial proliferation and region-specific differentiation, and suggest downstream β-catenin pathway activation as a potential approach to ameliorate regenerative defects in WNT10A patients.
Current protocols in mouse biology | 2016
Dany Gaillard; Jennifer M. Stratford
The natural like and dislike of foods based on taste is one of the most easily observed behaviors in animals. Animals eat palatable foods and reject aversive foods, which makes measurement of taste perception possible using various behavioral techniques. Three different methods to accurately measure taste behavior are described here. First, two‐bottle preference tests evaluate whether a taste compound (tastant) is preferred over water. Second, lickometer tests quantify the like and dislike for multiple concentrations of the same tastant or multiple tastants at the same time. Finally, conditioned taste aversion tests accurately determine the perceived taste threshold for palatable tastants. Together, these diverse methods enable researchers to observe and measure behavioral taste responses in mice to any tastant.
M S-medecine Sciences | 2008
Naim Akhtar Khan; Dany Gaillard; Abdelghani El-Yassimi; Patricia Passilly-Degrace; Aziz Hichami; Philippe Besnard
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. [Unraveling the downstream signalling of gustatory perception of lipids.] Naim Akhtar Khan, Dany Gaillard, Abdelghani El-Yassimi, Patricia Passilly-Degrace, Aziz Hichami, Philippe Besnard