Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danyan Zhu is active.

Publication


Featured researches published by Danyan Zhu.


Stem Cells and Development | 2008

Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro.

Ling Ding; Xingguang Liang; Ying Hu; Danyan Zhu; Yijia Lou

We previously reported that treatment of icariin could significantly induce cardiomyocyte differentiation of murine embryonic stem (ES) cells in vitro. In the present study, the exact activity initiated by icariin was further confirmed and the underlying molecular mechanism was investigated. We found that cardiomyocyte differentiation was efficiently stimulated only if icariin was administrated between days 5 and 8 in differentiation course, which indicated with elevated percentage of embryoid bodies (EB) and with beating areas and up- regulated expression of alpha-actinin and troponin T. Exposure of icariin triggered intracellular reactive oxygen species (ROS) generation of EBs in 3 h, which was abolished in the presence of either NADPH oxidase inhibitor DPI or antioxidant Trolox. Meanwhile, expression of NOX4, a membrane combined enzyme responsible for ROS generation, was promoted by icariin in a dose-dependent manner. Although p38MAPK (mitogen-activated protein kinase), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal protein kinase (JNK) were spontaneously activated in early differentiation, only the phosphorylation of p38MAPK was enhanced and prolonged when icariin was present, whereas both ERK and JNK showed no response to icariin treatment. Moreover, the inducible effect of icariin was blunted by SB203580, a specific inhibitor of p38MAPK. On the contrary, neither UO126 nor SP600125, the specific inhibitor of ERK and JNK, could abolish icariin-stimulated differentiation. Nuclear location of MEF2C, which played a critical role in cardiomyocyte differentiation and could be activated by p38MAPK, was stimulated after icariin exposure. Taken together, these results suggest that ROS generation and the subsequent activation of p38MAPK are essential for the inducible function of icariin on cardiomyocyte differentiation of murine embryonic stem cells in vitro.


Journal of Cellular Biochemistry | 2008

Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells†

Yanbo Wo; Danyan Zhu; Ying Hu; Zhiqiang Wang; Jian Liu; Yijia Lou

The significant promoting effects of some prenylflavonoids on cardiac differentiation of mouse embryonic stem (ES) cells via reactive oxygen species (ROS) signaling pathway were investigated. The most effective differentiation was facilitated by icariin (ICA), followed by icaritin (ICT), while desmethylicaritin (DICT) displayed the weakest but still significant inducible effect. Contrarily, DICT demonstrated the strongest anti‐oxidative activity while ICA displayed only little in vitro, which was well matched with the hydroxyl (OH) numbers and the positions in the molecular structures. Therefore, ROS signaling cascades were assumed to be involved in prenylflavonoids induced cardiomyogenesis. Treatment with ICA, intracellular ROS in embryoid bodies was rapidly elevated, which was abolished by the NADPH‐oxidase inhibitor apocynin; elimination of intracellular ROS by vitamin E or pyrrolidine dithiocarbamate (PDTC) inhibited ICA induced cardiomyogenesis; ROS‐sensitive extracellular‐regulated kinase 1, 2 (ERK1, 2) and p38 activation were further observed, the cardiomyogenesis was significantly inhibited in the presence of ERK1, 2 or p38 inhibitor U0126 or SB203580, indicating the roles of NADPH‐ROS‐MAPKs signaling cascades in prenylflavonoids induced cardiac differentiation. There was no difference in Nox4 NADPH oxidase expression between ICA and ICT treatments, however, ROS concentration in EBs after ICT administration was lower than that after ICA treatment, followed by less activation of ERK1, 2, and p38. These results revealed that the significant promoting effects of prenylflavonoids on cardiac differentiation was at least partly via ROS signaling cascades, and the facilitating abilities preferentially based on the nature of prenylflavonoids themselves, but anti‐oxidative activity determined by the OH numbers and the positions in the structures do influence the cardiomyogenesis in vitro. J. Cell. Biochem. 103: 1536–1550, 2008.


Chemico-Biological Interactions | 2009

Enhanced co-expression of β-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner

Zhiqiang Wang; Huanhuan Wang; Jiaying Wu; Danyan Zhu; Xiangnan Zhang; Lili Ou; Yongping Yu; Yijia Lou

A previous small molecule screen demonstrated that some prenylflavonoids can promote neuronal differentiation from mouse embryonic stem (ES) cells based on morphologic criteria. Here we build on this observation and examine the neuronal subtypes induced by icaritin, a compound screened, and the molecular events underlying the differentiation. In the presence of icaritin, the number of neural rosettes in embryoid bodies (EBs) expressing nestin efficiently increased and the neuroectodermal gene Fgf5 expression upregulated during germ layer formation. The neural progenitors generated from icaritin-treated EBs were further differentiated into the neurons (marked by beta-tubulin III) and also enhanced the choline acetyltransferase (ChAT) expression upon terminal differentiation. A suppression of p38 mitogen-activated protein kinase (p38MAPK) phosphorylation and sustained extracellular signal-regulated protein kinase (ERK) phosphorylation existed simultaneously without estrogen-like activities involved. Taken together, enhanced co-expression of beta-tubulin III and choline acetyltransferase in neuronal differentiation from mouse ES cells is promoted by icaritin via estrogen receptor-independent action.


Journal of Ethnopharmacology | 2013

Activating glucocorticoid receptor-ERK signaling pathway contributes to ginsenoside Rg1 protection against β-amyloid peptide-induced human endothelial cells apoptosis.

Jieping Yan; Qibing Liu; Yuan Dou; Yini Hsieh; Yan Liu; Rong-rong Tao; Danyan Zhu; Yijia Lou

The deposition of β-amyloid (Aβ) in neurons and vascular cells of the brain has been characterized in Alzheimers disease. Ginsenoside Rg1 (Rg1) is an active components in Panax ginseng, a famous traditional Chinese medicines recorded in Compendium of Materia Medica. Present study attempted to evaluate the potential mechanisms of Aβ-mediated insult and the protective effects of Rg1 on human endothelial cells. Rg1 attenuated the Aβ25-35-associated mitochondrial apoptotic events, accompanied by inhibiting HIF-1α expression followed by intracellular reactive nitrogen species generation, and protein nitrotyrosination. These protective effects were abolished by glucocorticoid receptor (GR) antagonist RU486 or p-ERK inhibitor U0126 rather than estrogen receptor α antagonist ICI 82,780. Taken together, our results suggested that Rg1 protected against Aβ25-35-induced apoptosis at least in part by two complementary GR-dependent ERK phosphorylation pathways: (1) down-regulating HIF-1α initiated protein nitrotyrosination, and (2) inhibiting mitochondrial apoptotic cascades. These data provided a novel insight to the mechanisms of Rg1protective effects on Aβ25-35-induced endothelial cells apoptosis, suggesting that GR-ERK signaling pathway might play an important role in it.


Neuropharmacology | 2012

Ginsenoside Rg1 protection against β-amyloid peptide-induced neuronal apoptosis via estrogen receptor α and glucocorticoid receptor-dependent anti-protein nitration pathway.

Jiaying Wu; Zongfu Pan; Zhiqiang Wang; Wenjie Zhu; Yuanyuan Shen; Rong Cui; Jiazhen Lin; Hao Yu; Qiongque Wang; Jianchang Qian; Yongping Yu; Danyan Zhu; Yijia Lou

Ginsenoside Rg1 (Rg1) acts as a neuroprotective agent against various insults, however, the underlying mechanism has not been fully elucidated yet. Here, we report that Rg1 protects primary rat cerebrocortical neurons against β-amyloid peptide₂₅₋₃₅ (Aβ₂₅₋₃₅) injury via estrogen receptor α (ERα) and glucocorticoid receptor (GR)-dependent anti-protein nitration pathway. In primary rat cerebrocortical neuron cultures under basal conditions, Rg1 leads to nuclear translocation of ERα and GR, induces related responsive gene PR, pS₂ and MKP-1, SGK transcription. Meantime, Rg1 also increases the basal level of ERK1/2 phosphorylation. In the presence of toxic level of Aβ₂₅₋₃₅, Rg1 maintains ERK1/2 phosphorylation, attenuates iNOS expression, NO production, and inhibits NF-κB nuclear translocation, protein nitration and cell death. The antiapoptotic effects of Rg1 via both ERα and GR were abolished by small interfering RNAs (siRNA). ERK1/2 phosphorylation inhibitor U0126 can block downstream iNOS expression and NO generation. Interestingly, the anti-protein nitration effect of Rg1 is well matched with ERα and GR activation, although its anti-ROS production effect is in an ERα- and GR-independent manner. These results suggest that Rg1 ameliorates Aβ₂₅₋₃₅-induced neuronal apoptosis at least in part by two complementary ERα- and GR-dependent downstream pathways: (1) upregulation of ERK1/2 phosphorylation followed by inhibiting iNOS expression, NO generation and protein tyrosine nitration. (2) reduction NF-κB nuclear translocation. These data provide new understanding into the mechanisms of Rg1 anti-apoptotic functions after Aβ₂₅₋₃₅ exposure, suggesting that ERα and GR-dependent anti-protein tyrosine nitration pathway might take an important role in the neuroprotective effect of Rg1.


European Journal of Pharmacology | 2009

Protective effects of asiatic acid against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system via redox-regulated leukotriene C4 synthase expression pathway.

Kuifen Ma; Yuyu Zhang; Danyan Zhu; Yijia Lou

Asiatic acid is a triterpenoid component possessing antioxidative, anti-inflammatory and hepatoprotective activity. In this issue, we explored the protective effects of asiatic acid and the relative mechanism in the D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system. The cultures were pretreated with asiatic acid for 12 h, followed by D-GalN/LPS exposure for 12 h. Asiatic acid reduced aspartate aminotransferase and lactate dehydrogenase generation and increased cell viability in a concentration-dependent manner. Meanwhile, the effects of asiatic acid in leukotriene C(4) synthase (LTC(4)S) expression and cellular redox status including reactive oxygen species and GSH content were detected. The results showed that D-GalN/LPS induced the increase of reactive oxygen species followed by extracellular signal-regulated kinase 1/2 (ERK 1/2) and nuclear factor-kappaB (NF-kappaB) activation. Treatment with ERK 1/2 specific inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) abolished the ERK1/2 protein phosphorylation and blunted LTC(4)S expression. Reactive oxygen species signaling pathway inhibitor pyrrolidine dithiocarbamate (PDTC) inhibited reactive oxygen species generation and NF-kappaB activation, which in turn blocked LTC(4)S expression and attenuated the injury. Asiatic acid can protect the hepatocytes against D-GalN/LPS-induced hepatotoxicity. During which, the cell redox was ameliorated and increased expression of LTC(4)S was reversed by the pretreatment of asiatic acid. Taken together, asiatic acid can protect against D-GalN/LPS-induced hepatotoxicity partly via redox-regulated LTC(4)S expression pathway.


Antioxidants & Redox Signaling | 2014

Nitrosative stress induces peroxiredoxin 1 ubiquitination during ischemic insult via E6AP activation in endothelial cells both in vitro and in vivo.

Rong-rong Tao; Huan Wang; Ling-Juan Hong; Ji-Yun Huang; Ying-Mei Lu; Mei-hua Liao; Wei-Feng Ye; Nan-Nan Lu; Danyan Zhu; Qian Huang; Kohji Fukunaga; Yi-jia Lou; Ikuo Shoji; Christopher S. Wilcox; En-Yin Lai; Feng Han

AIMS Although there is accumulating evidence that increased formation of reactive nitrogen species in cerebral vasculature contributes to the progression of ischemic damage, but the underlying molecular mechanisms remain elusive. Peroxiredoxin 1 (Prx1) can initiate the antioxidant response by scavenging free radicals. Therefore, we tested the hypothesis that Prx1 regulates the susceptibility to nitrosative stress damage during cerebral ischemia in vitro and in vivo. RESULTS Proteomic analysis in endothelial cells revealed that Prx1 was upregulated after stress-related oxygen-glucose deprivation (OGD). Although peroxynitrite upregulated Prx1 rapidly, this was followed by its polyubiquitination within 6 h after OGD mediated by the E3 ubiquitin ligase E6-associated protein (E6AP). OGD colocalized E6AP with nitrotyrosine in endothelial cells. To assess translational relevance in vivo, mice were studied after middle cerebral artery occlusion (MCAO). This was accompanied by Prx1 ubiquitination and degradation by the activation of E6AP. Furthermore, brain delivery of a lentiviral vector encoding Prx1 in mice inhibited blood-brain barrier leakage and neuronal damage significantly following MCAO. INNOVATION AND CONCLUSIONS Nitrosative stress during ischemic insult activates E6AP E3 ubiquitin ligase that ubiquitinates Prx1 and subsequently worsens cerebral damage. Thus, targeting the Prx1 antioxidant defense pathway may represent a novel treatment strategy for neurovascular protection in stroke.


European Journal of Pharmacology | 2008

Involvement of NF-κB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells

Yanbo Wo; Danyan Zhu; Yongping Yu; Yijia Lou

Icariin has been reported to facilitate the differentiation of mouse embryonic stem (ES) cells into cardiomyocytes; however, the mechanism on cardiomyogenic cell lineage differentiation has not been fully elucidated yet. In the present studies, an underlying signaling network including p38, extracellular signal-regulated kinase 1, 2 (ERK1, 2), nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) transcription factors c-jun and c-fos was assumed in icariin induced cardiomyogenesis. Icariin rapidly activated p38 and ERK1, 2 in embryoid bodies, treatment with p38 antagonist 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) or ERK1, 2 inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) significantly abolished icariin induced cardiac commitment, MEF2C gene expression and nuclear translocation, as well as cardiac-specific protein alpha-actinin expression, indicating that p38 and ERK1, 2 are specifically involved in icariin stimulated cardiomyogenic cell lineage differentiation of ES cells. Further, IkappaBalpha phosphorylation and NF-kappaB p65 translocation to the nucleus appeared rapidly when embryoid bodies exposed to icariin, and the expression of IkappaBalpha or NF-kappaB p65 in cytoplasm was decreased concomitantly. Moreover, icariin increased c-jun and c-fos mRNA and protein expression. Either SB203580 or U0126 displayed inhibitory effect on icariin induced NF-kappaB and AP-1 activation. It could be concluded that p38 and ERK1, 2 are activated in a coordinated manner, which in turn contribute to NF-kappaB and AP-1 activation in icariin induced cardiomyogenic cell lineage differentiation of mouse ES cells.


ChemMedChem | 2012

A 2,6-Disubstituted 4-Anilinoquinazoline Derivative Facilitates Cardiomyogenesis of Embryonic Stem Cells

Guofang Shen; Ying Hu; Jianwei Wu; Ke Jin; Danyan Zhu; Yandong Zhang; Yongping Yu; Yijia Lou

Chemical approaches are widely used in directed differentiation of embryonic stem (ES) cells. In our search for novel lead compounds that could facilitate cardiomyogenesis of ES cells, we designed a two‐step screening system based on P19 embryonic carcinoma and mouse ES cells. Application of this system to a quinazoline compound library including 2,3‐disubstituted 8‐arylamino‐3H‐imidazo[4,5‐g]quinazolines and 2,6‐disubstituted 4‐anilinoquinazoline led us to the discovery of compound 62, which exhibits a stable cardiomyogenic effect on both P19 and mouse ES cells at a concentration of 0.1 μM. An EGFR inhibition assay and molecular docking studies confirmed 62 as a potent EGFR inhibitor with a tyrosine kinase IC50 value of 101 nM. However, major differences in cardiomyogenic activity were observed between iressa and 62, indicating that other molecular events are also involved in compound 62‐induced cardiomyogenesis of ES cells.


Journal of Cellular Biochemistry | 2012

Junctophilin 2 knockdown interfere with mitochondrium status in ESC‐CMs and cardiogenesis of ES cells

Xingguang Liang; Yuqin Mei; Xin Huang; Guofang Shen; Danyan Zhu; Yongping Yu; Jianan Wang; Yijia Lou

In the present study, we explored the possible links between Junctophilin 2 (Jp2) and the mitochondrium‐sarcoplasmic reticulum (SR) interaction in embryonic stem cell‐derived cardiomyocytes (ESC‐CMs), as well as the role of Jp2 in cardiogenesis of ES cells. We found that Ca2+ transient was abnormal and mitochondria were de‐energized within siJp2 ESC‐CMs. The essential juxtaposition structure of mitochondrium with SR was destroyed accompanied by selectively downregulation of Pgc‐1α, Nrf‐1, and Mfn‐2. Impaired co‐localization of the JP2 and sarcomeres (α‐Actinin or Troponin‐T) appeared in embryoid bodies (EBs) after Jp2 knockdown. Calsequestrin2 and ryanodine receptor 2 within SR were expressed as early as the initiation of differentiation, while triadin and caveolin3 within t‐tubules (TTs) did not appear until the terminal, indicating that JP2 probably did not contribute to anchoring the SR to TTs at the early cardiogenesis stage as usual. In addition, Jp2 knockdown selectively decreased gene transcription toward cardiogenesis (Brachyury, Isl1, and Nkx2.5), subsequently weaken EB beating activity by 60%. Taken together, reducing JP2 expression in ESC‐CMs resulted in impaired mitochondrial status due to either abnormal cellular Ca2+ homeostasis or disturbing of juxtaposition. A sensitive time window of JP2 necessary in cardiac differentiation was found at early stage via an extra non‐TTs/SR anchor‐dependent role. J. Cell. Biochem. 113: 2884–2894, 2012.

Collaboration


Dive into the Danyan Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge