Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daping Quan is active.

Publication


Featured researches published by Daping Quan.


Neuroscience | 2006

Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells

S.-Y. Hou; H.-Y. Zhang; Daping Quan; Xiaolin Liu; J.-K. Zhu

Bone marrow stromal cells are multipotential stem cells that contribute to the differentiation of tissues such as bone, cartilage, fat and muscle. In the experiment, we found that bone marrow stromal cells can be induced to differentiate into cells expressing characteristic markers of Schwann cells, such as S-100 and glial fibrillary acidic protein, promoting peripheral nerve regeneration. Tissue-engineered bioartificial nerve grafting of rats by differentiated bone marrow stromal cells was applied for bridging a 10 mm-long sciatic nerve defect. Twenty-eight inbred strains of female F344 rats weighing 160 approximately 200 g were randomly divided into four nerve grafting groups, with seven rats in each group. Differentiated bone marrow stromal cell-laden group: poly(lactic-co-glycolic) acid tubes with an intrinsic framework were seeded with syngeneic bone marrow stromal cells which were induced for 5 days; Schwann cell-laden group: poly(lactic-co-glycolic) acid tubes with an intrinsic framework were seeded with syngeneic Schwann cells; acellular group: poly(lactic-co-glycolic) acid tubes were only filled with an intrinsic framework; autografts group. Three months later, a series of examinations was performed, including electrophysiological methods, walking track analysis, immunohistological staining of nerves, immunostaining of S-100 and neurofilament, and axon counts. The outcome indicated that bone marrow stromal cells are able to differentiate into Schwann-like cells and Schwann-like cells could promote nerve regeneration. Bone marrow stromal cells may be potentially optional seed cells for peripheral nerve tissue engineering because of abilities of promoting axonal regeneration.


Biomaterials | 2013

The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats.

Shuo Tang; Jixiang Zhu; Yangbin Xu; Andy Peng Xiang; Mei Hua Jiang; Daping Quan

Introducing concentration gradients of nerve growth factor (NGF) into conduits for repairing of peripheral nerve injury is crucial for nerve regeneration and guidance. Herein, combining differential adsorption of NGF/silk fibroin (SF) coating, the gradient of NGF-immobilized membranes (G-Ms) and nanofibrous nerve conduits (G-nNCs) were successfully fabricated. The efficacy of NGF gradients was confirmed by a quantitative comparison of dorsal root ganglia (DRG) neurite outgrowth on the G-Ms or uniform NGF-immobilized membranes (U-Ms). Significantly, the neurite turning ratio was 0.48xa0±xa00.11 for G-M group, but it was close to zero for U-M group. The neurite length of DRGs in the middle of the G-Ms was significantly longer than that of U-M group, even though the average NGF concentration was approximated. Furthermore, 12 weeks after implantation in rats with a 14xa0mm gap of sciatic nerve injury, G-nNCs achieved satisfying outcomes of nerve regeneration associated with morphological and functional improvements, which was superior to that of the uniform NGF-immobilized nNCs (U-nNCs). Sciatic function index (SFI), compound muscle action potentials (CMAPs), total number of myelinated nerve fibers, thickness of myelin sheath were similar for the G-nNCs and autografts, with the G-nNCs having a higher density of axons than the autografts. Our results demonstrated the significant role of introducing NGF gradients into scaffolds in promoting nerve regeneration.


Biomedical Materials | 2006

Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene.

Xiaodong Guo; Qixin Zheng; Shuhua Yang; Zengwu Shao; Quan Yuan; Zhengqi Pan; Shuo Tang; Kai Liu; Daping Quan

Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-beta(1)) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-beta(1) that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-beta(1) gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA(3)-TGF-beta(1) gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA(3) gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The transfected MSCs overexpressed their TGF-beta(1) gene products for at least 4 weeks in vivo. The control defects were filled with a mixture of fibrous and fibrocartilaginous tissue. The TGF-beta(1) gene transfected MSCs/poly-L-lysine coated PLA composite allografts used in this study are effective for articular cartilage repair. This novel TGF-beta(1) gene enhanced tissue engineering strategy may be of potential benefit to enhancing the repair of damaged articular cartilage, especially such damage caused by degenerative disease.


Journal of Controlled Release | 2010

Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo

Zhen-Yu Lin; Zhixia Duan; Xiaodong Guo; Jingfeng Li; Hong-Wei Lu; Qixin Zheng; Daping Quan; Shuhua Yang

BMP-2 is one of the most important growth factors of bone regeneration. Polylactide-co-glycolic acid (PLGA), which is used as a biodegradable scaffold for delivering therapeutic agents, has been intensively investigated. In previous studies, we synthesized a novel BMP-2-related peptide (designated P24) and found that it could enhance the osteoblastic differentiation of bone marrow stromal cells (BMSCs). The objective of this study was to construct a biomimetic composite by incorporating P24 into a modified PLGA-(PEG-ASP)n copolymer to promote bone formation. In vitro, our results demonstrated that PLGA-(PEG-ASP)n scaffolds were shown to be an efficient system for sustained release of P24. Significantly more BMSCs attached to the P24/PLGA-(PEG-ASP)n and PLGA-(PEG-ASP)n membranes than to PLGA, and the cells in the two groups subsequently proliferated more vigorously than those in the PLGA group. The expression of osteogenic markers in P24/PLGA-(PEG-ASP)n group was stronger than that in the PLGA-(PEG-ASP)n and PLGA groups. Radiographic and histological examination, Western blotting and RT-PCR showed that P24/PLGA-(PEG-ASP)n scaffold could induce more effective ectopic bone formation in vivo, as compared with PLGA-(PEG-ASP)n or gelatin sponge alone. It is concluded that the PLGA-(PEG-ASP)n copolymer is a good P24 carrier and can serve as a good scaffold for controlled release of P24. This novel P24/PLGA-(PEG-ASP)n composite promises to be an excellent biomaterial for inducing bone regeneration.


International Journal of Nanomedicine | 2012

Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

Yi Xiong; Jixiang Zhu; Zhengyu Fang; Cheng-Guang Zeng; Chao Zhang; Guolong Qi; Manhui Li; Wei Zhang; Daping Quan; Jun Wan

Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury.


Biomaterials | 2012

Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

Qiang Zhou; Jixiang Zhu; Jianhui Xiao; Pengxia Wan; Chenjing Zhou; Zheqian Huang; Na Qiang; Wei Zhang; Zheng Wu; Daping Quan; Zhichong Wang

Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.


Biomedical Materials | 2012

Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels

Shuo Tang; Jingjing Zhao; Shuyun Xu; Jingfeng Li; Yu Teng; Daping Quan; Xiaodong Guo

Bone morphogenetic protein 2 (BMP-2) is the most powerful osteogenic factor; its effectiveness in enhancing osteoblastic activation has been confirmed both in vitro and in vivo. We developed a novel peptide (designated P24) derived from the knuckle epitope of BMP-2 and found it also had osteogenic bioactivity to some extent. The main objective of this study was to develop a controlled release system based on poly(trimethylene carbonate)-F127-poly(trimethylene carbonate) (PTMC₁₁-F127-PTMC₁₁) hydrogels for the P24 peptide, to promote bone formation. By varying the copolymer concentrations, we demonstrated that P24/PTMC₁₁-F127-PTMC₁₁ hydrogels were an efficient system for the sustained release of P24 over 21-35 days. The P24-loaded hydrogels elevated alkaline phosphatase activity and promoted the expression of osteocalcin mRNA in bone marrow stromal cells (BMSCs) in vitro. Radiographic and histological examination showed that P24-loaded hydrogels could induce more effective ectopic bone formation in vivo than P24-free hydrogels. These results indicate that the PTMC₁₁-F127-PTMC₁₁ hydrogel is a suitable carrier for the controlled release of P24, and is a promising injectable biomaterial for the induction of bone regeneration.


International Journal of Biological Macromolecules | 2012

Elastic chitosan conduits with multiple channels and well defined microstructure.

Jixiang Zhu; Yi Xiong; Chenguang Zeng; Na Qiang; Daping Quan; Jun Wan

Four kinds of chitosan conduits with longitudinal multi-channels and controlled internal microstructures were prepared using a special mold and a freeze-drying method. One of the conduits was fabricated from a chitosan solution (ab NC), while the other three groups were made from a pre-gelled chitosan solution using genipin as a chemical cross-linker (ab gNC), dibasic sodium phosphate as a physical cross-linker (ab pNC) or a combined ionic and covalent co-cross-linker (ab gpNC), respectively. The porosity of the chitosan conduits ranged from 88 to 90%. The gpNC showed highly interconnected and uniformly distributed pores compared to NC, the gNC and pNC. In contrast, the gNC and gpNC showed about 10% of the volume swelling ratio in 37°C PBS solution, although the gpNC scaffolds water uptake was the highest, at more than 17 times its original mass. Compressive tests showed that gpNC had significant elasticity and maintained its physical integrity even after compressing them down to 20% of their original height. The elastic modulus of gpNC reached 80 kPa, which was more than twice that of the other groups. Adhesion and proliferation of PC12 cells on chitosan gpNC scaffolds showed excellent properties by MTT and SEM observation, which indicated the potential of gpNC scaffolds for nerve tissue engineering applications.


Biomedical Materials | 2014

Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor.

Qiujing Wang; Yuyuan Gao; Xinlin Sun; Bin Ji; Xubo Cui; Yaqi Liu; Tao Zheng; Chengwei Chen; Xiaodan Jiang; Aiping Zhu; Daping Quan

Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can promote clot organization and endothelial cell proliferation in a rat aneurysm model.


European Journal of Pharmaceutical Sciences | 2012

Synthesis of a novel CS-g-MMCs conjugate and the inhabitation on the proliferation of Tenon's capsule fibroblasts in vitro.

Lihong Duan; Xiaoning Li; Liangqi Ouyang; Daping Quan; Qiongjuan Zheng; Jian Ma; Qianying Gao; Jian Ge

A novel anti-proliferative macromolecular conjugate, CS-g-MMCs, was synthesized in order to decrease the cytotoxicity of Mitomycin C (MMC) which was a traditional anti-proliferative agent of fibroblast in trabeculectomy. The structure of CS-g-MMCs was characterized by (1)H NMR, FT-IR spectroscopy and GPC analysis. The grafting degree (dg) of MMC onto chitosan (CS) was determined to be in the range of 2.8-11.3%, which could be controlled by variation of the molar ratios of MMC to oxidized chitosan (CS-CHO). In the drug release profiles of CS-g-MMCs in vitro, an initial burst followed by slow leakage was observed, and addition of acid or lysozyme obviously accelerated the MMC release. The MTS assay indicated that CS-CHO of 8 mg/ml has no cytotoxicity against human Tenons capsule fibroblasts (HTCFs). The inhibition of HTCFs proliferation by CS-g-MMCs increased along with increasing the dg of conjugate. The CS-g-MMCs also caused the apoptosis of HTCFs and interfered in the active DNA synthesis in HTCFs. Furthermore, the expression of a-SMA at gene and protein levels were obviously lower when HTCFs were treated with CS-g-MMCs, as compared to MMC or blend of MMC/CS-CHO (p<0.05). Our results primarily demonstrated that the CS-g-MMCs conjugates have low cytotoxicity and have the effect to inhibit fibroblast proliferation.

Collaboration


Dive into the Daping Quan's collaboration.

Top Co-Authors

Avatar

Jixiang Zhu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Dong

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Gaoyi Xie

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Na Qiang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Tao Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Guo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jian Ge

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lihong Duan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Mingfa Yan

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge