Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daqi Zhang is active.

Publication


Featured researches published by Daqi Zhang.


Nature | 2014

Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts

Feng Yang; Xiao Wang; Daqi Zhang; Juan Yang; Da Luo; Ziwei Xu; Jiake Wei; Jian-Qiang Wang; Zhi Xu; Fei Peng; Xuemei Li; Ruoming Li; Yilun Li; Meihui Li; Xuedong Bai; Feng Ding; Yan Li

Carbon nanotubes have many material properties that make them attractive for applications. In the context of nanoelectronics, interest has focused on single-walled carbon nanotubes (SWNTs) because slight changes in tube diameter and wrapping angle, defined by the chirality indices (n, m), will shift their electrical conductivity from one characteristic of a metallic state to one characteristic of a semiconducting state, and will also change the bandgap. However, this structure–function relationship can be fully exploited only with structurally pure SWNTs. Solution-based separation methods yield tubes within a narrow structure range, but the ultimate goal of producing just one type of SWNT by controlling its structure during growth has proved to be a considerable challenge over the last two decades. Such efforts aim to optimize the composition or shape of the catalyst particles that are used in the chemical vapour deposition synthesis process to decompose the carbon feedstock and influence SWNT nucleation and growth. This approach resulted in the highest reported proportion, 55 per cent, of single-chirality SWNTs in an as-grown sample. Here we show that SWNTs of a single chirality, (12, 6), can be produced directly with an abundance higher than 92 per cent when using tungsten-based bimetallic alloy nanocrystals as catalysts. These, unlike other catalysts used so far, have such high melting points that they maintain their crystalline structure during the chemical vapour deposition process. This feature seems crucial because experiment and simulation both suggest that the highly selective growth of (12, 6) SWNTs is the result of a good structural match between the carbon atom arrangement around the nanotube circumference and the arrangement of the catalytically active atoms in one of the planes of the nanocrystal catalyst. We anticipate that using high-melting-point alloy nanocrystals with optimized structures as catalysts paves the way for total chirality control in SWNT growth and will thus promote the development of SWNT applications.


Journal of the American Chemical Society | 2015

Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts

Feng Yang; Xiao Wang; Daqi Zhang; Kuo Qi; Juan Yang; Zhi Xu; Meihui Li; Xiulan Zhao; Xuedong Bai; Yan Li

The growth of zigzag single-walled carbon nanotubes (SWNTs) is most challenging among all types of SWNTs, with the highest reported selectivity of ∼7%. Here we realized the dominant growth of (16,0) tubes at the abundance near ∼80% by using intermetallic W6Co7 catalysts containing plenty of (1 1 6) planes together with optimizing the growth conditions. These (1 1 6) planes may act as the structure templates for (16,0) SWNTs due to the geometrical match between the open end of the (16,0) tube and the atomic arrangements of the (1 1 6) planes in W6Co7. Using catalysts with designed structure as solid state template at suitable kinetic conditions offers a strategy for selective growth of zigzag SWNTs.


Accounts of Chemical Research | 2016

Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure

Feng Yang; Xiao Wang; Meihui Li; Xiyan Liu; Xiulan Zhao; Daqi Zhang; Yan Zhang; Juan Yang; Yan Li

Single-walled carbon nanotubes (SWNTs) have shown great potential in various applications attributed to their unique structure-dependent properties. Therefore, the controlled preparation of chemically and structurally pristine SWNTs is a crucial issue for their advanced applications (e.g., nanoelectronics) and has been a great challenge for two decades. Epitaxial growth from well-defined seeds has been shown to be a promising strategy to control the structure of SWNTs. Segments of carbon nanotubes, including short pipes from cutting of preformed nanotubes and caps from opening of fullerenes or cyclodehydrogenation of polycyclic hydrocarbon precursors, have been used as the seeds to grow SWNTs. Single-chirality SWNTs were obtained with both presorted chirality-pure SWNT segments and end caps obtained from polycyclic hydrocarbon molecules with designed structure. The main challenges of nanocarbon-segment-seeded processes are the stability of the seeds, yield, and efficiency. Catalyst-mediated SWNT growth is believed to be more efficient. The composition and morphology of the catalyst nanoparticles have been widely reported to affect the chirality distribution of SWNTs. However, chirality-specific SWNT growth is hard to achieve by alternating catalysts. The specificity of enzyme-catalyzed reactions brings us an awareness of the essentiality of a unique catalyst structure for the chirality-selective growth of SWNTs. Only catalysts with the desired atomic arrangements in their crystal planes can act as structural templates for chirality-specific growth of SWNTs. We have developed a new family of catalysts, tungsten-based intermetallic compounds, which have high melting points and very special crystal structures, to facilitate the growth of SWNTs with designed chirality. By the use of W6Co7 catalysts, (12,6) SWNTs were directly grown with purity higher than 92%. Both high-resolution transmission electron microscopy measurements and density functional theory simulations show that the selective growth of (12,6) tubes is due to a good structural match between the carbon atom arrangement around the nanotube circumference and the metal atom arrangement of (0 0 12) planes in the catalyst. Similarly, (16,0) SWNTs exhibit a good structural match to the (116) planes of the W6Co7 catalyst. By optimization of the chemical vapor deposition (CVD) conditions, zigzag (16,0) SWNTs, which are generally known as a kinetically unfavorable species in CVD growth, were obtained with a purity of ∼80%. Generally speaking, the chirality-specific growth of SWNTs is realized by the cooperation of two factors: the structural match between SWNTs and the catalysts makes the growth of SWNTs with specific chirality thermodynamically favorable, and further manipulation of the CVD conditions results in optimized growth kinetics for SWNTs with this designed chirality. We expect that this advanced epitaxial growth strategy will pave the way for the ultimate goal of chirality-specified growth of SWNTs and will also be applicable in the controlled preparation of other nanomaterials.


Small | 2013

Spectroscopic Characterization of the Chiral Structure of Individual Single‐Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons

Daqi Zhang; Juan Yang; Yan Li

The chiral structure of single-walled carbon nanotubes (SWNTs) and the edge structure of graphene nanoribbons (GNRs) play an important role in determining their electronic and phonon structures. Spectroscopic methods, which require simple sample preparation and cause minimal sample damage, are the most commonly utilized techniques for determining the structures of SWNTs and graphene. In this review the current status of various spectroscopic methods are presented in detail, including resonance Raman, photoluminescence (PL), and Rayleigh scattering spectroscopies, for determination of the chiral structure of individual SWNTs and the edge structure of isolated graphene, especially of graphene nanoribbons. The different photophysical processes involved in each spectroscopic method are reviewed to achieve a comprehensive understanding of the electronic and phonon properties of SWNTs and graphene. The advantages and limitations of each spectroscopic method as well as the challenges in this area are discussed.


ACS Nano | 2017

Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes

Feng Yang; Xiao Wang; Jia Si; Xiulan Zhao; Kuo Qi; Chuanhong Jin; Zeyao Zhang; Meihui Li; Daqi Zhang; Juan Yang; Zhiyong Zhang; Zhi Xu; Lian-Mao Peng; Xuedong Bai; Yan Li

Semiconducting single-walled carbon nanotubes (s-SWNTs) with diameters of 1.0-1.5 nm (with similar bandgap to crystalline silicon) are highly desired for nanoelectronics. Up to date, the highest reported content of s-SWNTs as-grown is ∼97%, which is still far below the daunting requirements of high-end applications. Herein, we report a feasible and green pathway to use H2O vapor to modulate the structure of the intermetallic W6Co7 nanocrystals. By using the resultant W6Co7 nanocatalysts with a high percentage of (1 0 10) planes as structural templates, we realized the direct growth of s-SWNT with the purity of ∼99%, in which ∼97% is (14,4) tubes (diameter 1.29 nm). H2O can also act as an environmentally friendly and facile etchant for eliminating metallic SWNTs, and the content of s-SWNTs was further improved to 99.8% and (14,4) tubes to 98.6%. High purity s-SWNTs with even bandgap determined by their uniform structure can be used for the exquisite applications in different fields.


Beilstein Journal of Nanotechnology | 2011

How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids.

Juan Yang; Daqi Zhang; Yan Li

Summary Single-walled carbon nanotubes (SWNTs) can be efficiently dispersed in the imidazolium-based ionic liquids (ILs), at relatively high concentration, with their intrinsic structure and properties retained. Due to the hygroscopicity of the ILs, water bands may be introduced in the absorption spectra of IL-dispersed SWNTs and cause problems in spectral deconvolution and further analysis. In order to remove this influence, a quantitative characterization of the trace water in [BMIM]+[PF6]− and [BMIM]+[BF4]− was carried out by means of UV–vis-NIR absorption spectroscopy. A simple yet effective method involving spectral subtraction of the water bands was utilized, and almost no difference was found between the spectra of the dry IL-dispersed SWNT samples treated under vacuum for 10 hours and the spectra of the untreated samples with subtraction of the pure water spectrum. This result makes it more convenient to characterize SWNTs with absorption spectra in the IL-dispersion system, even in the presence of trace amount of water.


ACS Nano | 2016

(n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering

Daqi Zhang; Juan Yang; Meihui Li; Yan Li

In this work, we report an accurate and convenient method that can be used to assign the chirality of all metallic single-walled carbon nanotubes (M-SWNTs). This method is designed based on the electronic Raman scattering (ERS) features, which are resonantly enhanced at the corresponding excitonic transition energies (Mii+ and Mii-). Using this method, we are able to accurately determine the electronic property Mii with the resolution of a vibrational Raman spectroscopy (∼0.3 meV), which is significantly higher than that of the electronic spectroscopies (∼3 meV). We use the Mii splitting value, which is found insensitive to environmental changes, as a universal criteria for (n,m) assignments in various environments. As an illustrative example, simply using a commercialized Raman spectrometer with two laser lines (1.959 and 2.330 eV), we are able to unambiguously assign 18 metallic chiralities with M11 in the 1.6-2.3 eV range in our samples. This method provides an accurate database of Miis in a similar way as photoluminescence excitation spectroscopy does for Siis. It can facilitate further systematic studies on the properties of M-SWNTs with defined chirality.


Nano Research | 2015

Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity

Juan Yang; Yu Liu; Daqi Zhang; Xiao Wang; Ruoming Li; Yan Li

Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes (SWNTs) has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon–carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-bandgap large-diameter tubes.


ACS Nano | 2017

Bilayer Plots for Accurately Determining the Chirality of Single-Walled Carbon Nanotubes Under Complex Environments

Juan Yang; Daqi Zhang; Yuecong Hu; Chenmaya Xia; Sida Sun; Yan Li

The chirality (n,m) determines all structures and properties of a single-walled carbon nanotube (SWNT), therefore, accurate and convenient (n,m) assignments are vital in nanotube-related science and technology. Previously, a so-called Kataura plot that protracts the excitonic transition energies (Eiis) of SWNTs with various (n,m) with respect to the tube diameter (dt) has been widely utilized by researchers in the nanotube community for all (n,m)-related studies. However, the facts that both Eii and the calculated dt are subject to interactions with the environments make it inconvenient to accurately determine the (n,m) under complex environments. Here, we propose a series of bilayer plots that take into account the interactions between the SWNTs and the environments so that the (n,m) of SWNTs can be accurately determined. These plots have more advantages than the Kataura plot in concision, less data overlapping, and the suitability to be used in complex environments. We strongly encourage the researchers in the carbon nanotube community to utilize the bilayer plots for all (n,m)-related studies, especially for accurate and convenient (n,m) determination.


Nanoscale | 2015

(n,m) Assignments and quantification for single-walled carbon nanotubes on SiO2/Si substrates by resonant Raman spectroscopy

Daqi Zhang; Juan Yang; Feng Yang; Ruoming Li; Meihui Li; Dong Ji; Yan Li

Collaboration


Dive into the Daqi Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuedong Bai

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge