Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dara M. Cannon is active.

Publication


Featured researches published by Dara M. Cannon.


Nature Genetics | 2012

Identification of common variants associated with human hippocampal and intracranial volumes

Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).


Molecular Psychiatry | 2016

Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

T G M van Erp; Derrek P. Hibar; Jerod Rasmussen; David C. Glahn; Godfrey D. Pearlson; Ole A. Andreassen; Ingrid Agartz; Lars T. Westlye; Unn K. Haukvik; Anders M. Dale; Ingrid Melle; Cecilie B. Hartberg; Oliver Gruber; Bernd Kraemer; David Zilles; Gary Donohoe; Sinead Kelly; Colm McDonald; Derek W. Morris; Dara M. Cannon; Aiden Corvin; Marise W J Machielsen; Laura Koenders; L. de Haan; Dick J. Veltman; Theodore D. Satterthwaite; Daniel H. Wolf; R.C. Gur; Raquel E. Gur; Steve Potkin

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen’s d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25) and intracranial volumes (d=−0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Biological Psychiatry | 2007

Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder.

Dara M. Cannon; Masanori Ichise; Denise Rollis; Jacqueline M. Klaver; Shilpa K. Gandhi; Dennis S. Charney; Husseini K. Manji; Wayne C. Drevets

BACKGROUND Altered serotonergic function is thought to play a role in the pathophysiology of major depressive episodes based upon evidence from neuroimaging, pharmacological, postmortem and genetic studies. It remains unclear, however, whether depressed samples that differ with respect to having shown a unipolar versus a bipolar illness course also would show distinct patterns of abnormalities within the serotonergic system. The current study compared serotonin transporter (5-HTT) binding between unipolar-depressives (MDD), bipolar-depressives (BD) and healthy-controls (HC) to assess whether the abnormalities in 5-HTT binding recently found in depressed subjects with BD extend to depressed subjects with MDD. METHODS The 5-HTT binding-potential (BP) measured using positron emission tomography (PET) and [(11)C]DASB was compared between unmedicated, depressed subjects with MDD (n = 18) or BD (n = 18) and HC (n = 34). RESULTS Relative to the healthy group both MDD and BD groups showed significantly increased 5-HTT BP in the thalamus (24%, 14%, respectively), insula (15%) and striatum (12%). The unipolar-depressives had elevated 5-HTT BP relative to both BD and HC groups in the vicinity of the periaqueductal gray (PAG, 20%, 22%, respectively). The bipolar-depressives had reduced 5-HTT BP relative to both HC and MDD groups in the vicinity of the pontine raphe nuclei. Depression-severity correlated negatively with 5-HTT BP in the thalamus in MDD-subjects. CONCLUSIONS The depressed phases of MDD and BD both were associated with elevated 5-HTT binding in the insula, thalamus and striatum, but showed distinct abnormalities in the brainstem. The latter findings conceivably could underlie differences in the patterns of illness symptoms and pharmacological sensitivity observed between MDD and BD.


Biological Psychiatry | 2007

Distinct Profiles of Neurocognitive Function in Unmedicated Unipolar Depression and Bipolar II Depression

Joana Taylor Tavares; Luke Clark; Dara M. Cannon; Kristine Erickson; Wayne C. Drevets; Barbara J. Sahakian

BACKGROUND Studies have demonstrated neuropsychological deficits across a variety of cognitive domains in depression. Few studies have directly compared depressed subjects with major depressive disorder (MDD) and bipolar disorder (BD), and many are confounded by medication status across subjects. In this study, we compared the performance of unmedicated currently depressed MDD and BD groups on a battery of neuropsychological tests that included measures of risk taking and reflection impulsivity. METHODS Twenty-two MDD, seventeen BDII, and 25 healthy control subjects (HC), matched for age and IQ, were assessed on a battery of neuropsychological tests. RESULTS The depressed groups showed comparable ratings of depression severity and age of illness onset. The MDD group was impaired on tests of spatial working memory and attentional shifting, sampled less information on a test of reflection impulsivity, and was oversensitive to loss trials on a decision-making test. The BDII subjects were generally intact and did not differ significantly from control subjects on any test. CONCLUSIONS These data indicate differing profiles of cognitive impairment in unmedicated depressed MDD versus BDII subjects. Moderately depressed BDII subjects displayed relatively intact cognitive function, whereas MDD subjects demonstrated a broader range of executive impairments. These cognitive deficits in depression were not attributable to current medication status.


Biological Psychiatry | 2006

Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography.

Dara M. Cannon; Masanori Ichise; Stephen J. Fromm; Allison C. Nugent; Denise Rollis; Shilpa K. Gandhi; Jacqueline M. Klaver; Dennis S. Charney; Husseini K. Manji; Wayne C. Drevets

BACKGROUND Evidence from neuroimaging post-mortem, and genetic studies suggests that bipolar disorder (BD) is associated with abnormalities of the serotonin-transporter (5-HTT) system. Because of various limitations of these studies, however, it has remained unclear whether 5-HTT binding is abnormal in unmedicated BD-subjects. This study used PET and [(11)C]DASB, a radioligand that afforded higher sensitivity and specificity for the 5-HTT than previously available radioligands, to compare 5-HTT binding between BD and control subjects. METHODS The 5-HTT binding-potential (BP) was assessed in 18 currently-depressed, unmedicated BD-subjects and 37 healthy controls using PET and [(11)C]DASB. RESULTS In BD, the mean 5-HTT BP was increased in thalamus, dorsal cingulate cortex (DCC), medial prefrontal cortex and insula and decreased in the brainstem at the level of the pontine raphe-nuclei. Anxiety ratings correlated positively with 5-HTT BP in insula and DCC, and BP in these regions was higher in subjects manifesting pathological obsessions and compulsions relative to BD-subjects lacking such symptoms. Subjects with a history of suicide attempts showed reduced 5-HTT binding in the midbrain and increased binding in anterior cingulate cortex versus controls and to BD-subjects without attempts. CONCLUSIONS This is the first study to report abnormalities in 5-HTT binding in unmedicated BD-subjects. The direction of abnormality in the brainstem was opposite to that found in the cortex, thalamus, and striatum. Elevated 5-HTT binding in the cortex may be related to anxiety symptoms and syndromes associated with BD.


Biological Psychiatry | 2011

Habenula Volume in Bipolar Disorder and Major Depressive Disorder: A High-Resolution Magnetic Resonance Imaging Study

Jonathan Savitz; Allison C. Nugent; Wendy Bogers; Jonathan P. Roiser; Earle E. Bain; Alexander Neumeister; Carlos A. Zarate; Husseini K. Manji; Dara M. Cannon; Sean Marrett; Fritz A. Henn; Dennis S. Charney; Wayne C. Drevets

BACKGROUND Increased activity of the habenula has been implicated in the etiology of major depressive disorder (MDD), in which reductions in habenula volume are present after death. We conducted the first magnetic resonance imaging analysis of habenula volume in MDD and bipolar disorder (BD). METHODS High-resolution images (resolution approximately .4 mm(3)) were acquired with a 3T scanner, and a pulse sequence was optimized for tissue contrast resolution. The habenula was manually segmented by one rater blind to diagnosis. Seventy-four healthy control subjects (HC) were compared with both medicated (lithium/divalproex, n = 15) and unmedicated, depressed BD (n = 22) patients; unmedicated, depressed MDD patients (n = 28); and unmedicated MDD patients in remission (n = 32). RESULTS The unmedicated BD patients displayed significantly smaller absolute (p < .01) and normalized (p < .05) habenula volumes than the HC subjects. In post hoc assessments analyzing men and women separately, the currently-depressed women with MDD had smaller absolute (p < .05) habenula volumes than the HC women. None of the other psychiatric groups differed significantly from the HC group. CONCLUSIONS We provide further evidence for the involvement of the habenula in affective illness but suggest that a reduction in volume might be more pronounced in unmedicated, depressed BD subjects and female currently depressed MDD subjects. The habenula plays major roles in the long-term modification of monoamine transmission and behavioral responses to stress and in the suppression of dopamine cell activity after the absence of an expected reward. A reduction in habenula volume might thus have functional consequences that contribute to the risk for developing affective disease.


NeuroImage | 2011

Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder

Giacomo Salvadore; Allison C. Nugent; Hervé Lemaitre; David A. Luckenbaugh; Ruth Tinsley; Dara M. Cannon; Alexander Neumeister; Carlos A. Zarate; Wayne C. Drevets

Previous neuromorphometric investigations of major depressive disorder (MDD) have reported abnormalities in gray matter in several regions, although the results have been inconsistent across studies. Some discrepancies in the results across studies may reflect design limitations such as small sample sizes, whereas others may reflect biological variability that potentially manifests as differences in clinical course. For example, it remains unclear whether the abnormalities found in persistently depressed MDD subjects extend to or persist in patients who experience prolonged remission. The aim of the present study was to investigate gray matter (GM) differences in unmedicated, currently-depressed participants (dMDD) and unmedicated, currently-remitted (rMDD) participants with MDD compared to healthy controls (HC). The GM density and volume were compared across groups using voxel-based morphometry, a quantitative neuroanatomical technique, and high-resolution MRI images from 107 HC, 58 dMDD and 27 rMDD subjects. Relative to the HC group the dMDD group had reduced GM in the dorsal anterolateral (DALPFC), the dorsomedial (DMPFC) and the ventrolateral prefrontal cortex (VLPFC). Relative to the rMDD group the dMDD group showed reduced GM in the DALPFC, the VLPFC, the anterior cingulate cortex (ACC), the precuneus and the inferior parietal lobule. No regions were identified in which the rMDD group showed significantly lower GM compared to the HC group after p-values were corrected for the number of comparisons performed. In unmedicated patients in the depressed phase of MDD, we found evidence of morphometric abnormalities in DALPFC and in medial prefrontal cortical regions belonging to the visceromotor network. These findings, along with the absence of GM abnormalities in the remitted sample imply a possible link between greater GM tissue and better clinical outcome. Consistent with other neuroimaging and post-mortem neuropathological studies of MDD, we also found evidence of decreased white matter in patients with dMDD and rMDD.


Molecular Psychiatry | 2016

Subcortical volumetric abnormalities in bipolar disorder.

Derrek P. Hibar; Lars T. Westlye; T G M van Erp; Jerod Rasmussen; Cassandra D. Leonardo; Joshua Faskowitz; Unn K. Haukvik; Cecilie B. Hartberg; Nhat Trung Doan; Ingrid Agartz; Anders M. Dale; Oliver Gruber; Bernd Krämer; Sarah Trost; Benny Liberg; Christoph Abé; C J Ekman; Martin Ingvar; Mikael Landén; Scott C. Fears; Nelson B. Freimer; Carrie E. Bearden; Emma Sprooten; David C. Glahn; Godfrey D. Pearlson; Louise Emsell; Joanne Kenney; C. Scanlon; Colm McDonald; Dara M. Cannon

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case–control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen’s d=−0.232; P=3.50 × 10−7) and thalamus (d=−0.148; P=4.27 × 10−3) and enlarged lateral ventricles (d=−0.260; P=3.93 × 10−5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.


NeuroImage | 2010

AMYGDALA VOLUME IN DEPRESSED PATIENTS WITH BIPOLAR DISORDER ASSESSED USING HIGH RESOLUTION 3T MRI: THE IMPACT OF MEDICATION

Jonathan Savitz; Allison C. Nugent; Wendy Bogers; Alice Liu; Rebecca Sills; David A. Luckenbaugh; Earle E. Bain; Joseph L. Price; Carlos A. Zarate; Husseini K. Manji; Dara M. Cannon; Sean Marrett; Dennis S. Charney; Wayne C. Drevets

MRI-based reports of both abnormally increased and decreased amygdala volume in bipolar disorder (BD) have surfaced in the literature. Two major methodological weaknesses characterizing extant studies are treatment with medication and inaccurate segmentation of the amygdala due to limitations in spatial and tissue contrast resolution. Here, we acquired high-resolution images (voxel size=0.55 x 0.55 x 0.60 mm) using a GE 3T MRI scanner, and a pulse sequence optimized for tissue contrast resolution. The amygdala was manually segmented by one rater blind to diagnosis, using coronal images. Eighteen unmedicated (mean medication-free period 11+/-10 months) BD subjects were age and gender matched with 18 healthy controls, and 17 medicated (lithium or divalproex) subjects were matched to 17 different controls. The unmedicated BD patients displayed smaller left and right amygdala volumes than their matched control group (p<0.01). Conversely, the BD subjects undergoing medication treatment showed a trend towards greater amygdala volumes than their matched HC sample (p=0.051). Right and left amygdala volumes were larger (p<0.05) or trended larger, respectively, in the medicated BD sample compared with the unmedicated BD sample. The two control groups did not differ from each other in either left or right amygdala volume. BD patients treated with lithium have displayed increased gray matter volume of the cortex and hippocampus relative to untreated BD subjects in previous studies. Here we extend these results to the amygdala. We raise the possibility that neuroplastic changes in the amygdala associated with BD are moderated by some mood stabilizing medications.


Neuropsychopharmacology | 2009

Dopamine Type-1 Receptor Binding in Major Depressive Disorder Assessed using Positron Emission Tomography and [11C]NNC-112

Dara M. Cannon; Jacqueline M. Klaver; Summer A. Peck; Denise Rallis-Voak; Kristine Erickson; Wayne C. Drevets

The dopamine type-1 receptor has been implicated in major depressive disorder (MDD) by clinical and preclinical evidence from neuroimaging, post mortem, and behavioral studies. To date, however, selective in vivo assessment of D1 receptors has been limited to the striatum in MDD samples manifesting anger attacks. We employed the PET radioligand, [11C]NNC-112, to selectively assess D1 receptor binding in extrastriatal and striatal regions in a more generalized sample of MDD subjects. The [11C]NNC-112 nondisplaceable binding potential (BPND) was assessed using PET in 18 unmedicated, currently depressed subjects with MDD and 19 healthy controls, and compared between groups using MRI-based region-of-interest analysis. The mean D1 receptor BPND was reduced (14%) in the left middle caudate of the MDD group relative to control group (p<0.05). Among the MDD subjects D1 receptor BPND in this region correlated negatively with illness duration (r=−0.53; p=0.02), and the left-to-right BPND ratio correlated inversely with anhedonia ratings (r=−0.65, p=0.0040). The D1 receptor BPND was strongly lateralized in striatal regions (p<0.002 for main effects of hemisphere in accumbens area, putamen, and caudate). In post hoc analyses, a group-by-hemisphere-by-gender interaction was detected in the dorsal putamen, which was accounted for by a loss of the normal asymmetry in depressed women (F=7.33, p=0.01). These data extended a previous finding of decreased striatal D1 receptor binding in an MDD sample manifesting anger attacks to a sample selected more generally according to MDD criteria. Our data also more specifically localized this abnormality in MDD to the left middle caudate, which is the target of afferent neural projections from the orbitofrontal and anterior cingulate cortices where neuropathological changes have been reported in MDD. Finally, D1 receptor binding was asymmetrical across hemispheres in healthy humans, compatible with evidence that dopaminergic function in the striatum is lateralized during reward processing, voluntary movement, and self-stimulation behavior.

Collaboration


Dive into the Dara M. Cannon's collaboration.

Top Co-Authors

Avatar

Colm McDonald

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Cathy Scanlon

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Louise Emsell

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Camilla Langan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Peter McCarthy

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John McFarland

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Allison C. Nugent

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge