Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darcy Litteljohn is active.

Publication


Featured researches published by Darcy Litteljohn.


Parkinson's Disease | 2011

Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease.

Darcy Litteljohn; Emily N. Mangano; Melanie M Clarke; Jessica Bobyn; Kerry Moloney; Shawn Hayley

Parkinsons disease (PD) has been associated with exposure to a variety of environmental agents, including pesticides, heavy metals, and organic pollutants; and inflammatory processes appear to constitute a common mechanistic link among these insults. Indeed, toxin exposure has been repeatedly demonstrated to induce the release of oxidative and inflammatory factors from immunocompetent microglia, leading to damage and death of midbrain dopamine (DA) neurons. In particular, proinflammatory cytokines such as tumor necrosis factor-α and interferon-γ, which are produced locally within the brain by microglia, have been implicated in the loss of DA neurons in toxin-based models of PD; and mounting evidence suggests a contributory role of the inflammatory enzyme, cyclooxygenase-2. Likewise, immune-activating bacterial and viral agents were reported to have neurodegenerative effects themselves and to augment the deleterious impact of chemical toxins upon DA neurons. The present paper will focus upon the evidence linking microglia and their inflammatory processes to the death of DA neurons following toxin exposure. Particular attention will be devoted to the possibility that environmental toxins can activate microglia, resulting in these cells adopting a “sensitized” state that favors the production of proinflammatory cytokines and damaging oxidative radicals.


Neurobiology of Aging | 2012

Interferon-γ plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways

Emily N. Mangano; Darcy Litteljohn; Remmick So; Eric Nelson; Sarah Peters; Cheri Bethune; Jessica Bobyn; Shawn Hayley

Exposure to environmental contaminants, particularly pesticides, may be an important etiological factor in Parkinsons disease (PD); and evidence suggests a role for microglia-dependent inflammatory and oxidative processes in nigrostriatal pathology induced by such toxins. Yet, the events mediating microglial activation and their effects are not fully known. To this end, we hypothesized that the proinflammatory cytokine, interferon-gamma (IFN-γ), may be a prime factor in the pathogenesis of PD, given its critical role in regulating microglial responses to pathogens. Indeed, the present investigation demonstrated that genetic deletion of IFN-γ protected substantia nigra pars compacta (SNc) dopamine (DA) neurons from the toxic effects of the pesticide, paraquat, and normalized changes in inflammatory and oxidative factors within this brain region. Specifically, IFN-γ knockout prevented the paraquat-induced morphological signs of microglial activation and expression of key nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, while also preventing time-dependent changes in proinflammatory enzymes (inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2]), cytokines (interleukin-1β [IL-1β], tumor necrosis factor-α [TNF-α]), and signaling factors (c-Jun N-terminal kinase [JNK], p38 MAP kinase [p38], Signal transducer and activator of transcription-1 [STAT1], nuclear factor kappa B [NF-κB]). Moreover, paraquat transiently suppressed substantia nigra pars compacta expression of trophic and proneuroplastic factors (cyclic-AMP response element binding protein [CREB], brain-derived neurotrophic factor [BDNF]), and IFN-γ deficiency again reversed these effects. These data suggest that IFN-γ is important for paraquat-induced neurodegeneration and the accompanying oxidative, inflammatory, and trophic changes that characterize the response to the toxin. Targeting IFN-γ could thus have therapeutic implications for PD and other neurodegenerative conditions that involve multiple inflammatory pathways.


Frontiers in Cellular Neuroscience | 2013

Neuroplasticity and the next wave of antidepressant strategies

Shawn Hayley; Darcy Litteljohn

Depression is a common chronic psychiatric disorder that is also often co-morbid with numerous neurological and immune diseases. Accumulating evidence indicates that disturbances of neuroplasticity occur with depression, including reductions of hippocampal neurogenesis and cortical synaptogenesis. Improper trophic support stemming from stressor-induced reductions of growth factors, most notably brain derived neurotrophic factor (BDNF), likely drives such aberrant neuroplasticity. We posit that psychological and immune stressors can interact upon a vulnerable genetic background to promote depression by disturbing BDNF and neuroplastic processes. Furthermore, the chronic and commonly relapsing nature of depression is suggested to stem from “faulty wiring” of emotional circuits driven by neuroplastic aberrations. The present review considers depression in such terms and attempts to integrate the available evidence indicating that the efficacy of current and “next wave” antidepressant treatments, whether used alone or in combination, is at least partially tied to their ability to modulate neuroplasticity. We particularly focus on the N-methyl-D-aspartate (NMDA) antagonist, ketamine, which already has well documented rapid antidepressant effects, and the trophic cytokine, erythropoietin (EPO), which we propose as a potential adjunctive antidepressant agent.


Neuroscience | 2009

Interferon-γ deficiency modifies the motor and co-morbid behavioral pathology and neurochemical changes provoked by the pesticide paraquat

Darcy Litteljohn; Emily N. Mangano; N. Shukla; Shawn Hayley

In addition to nigrostriatal pathology and corresponding motor disturbances, Parkinsons disease (PD) is often characterized by co-morbid neuropsychiatric symptoms, most notably anxiety and depression. Separate lines of evidence indicate that inflammatory processes associated with microglial activation and cytokine release may be fundamental to the progression of both PD and its co-morbid psychiatric pathology. Accordingly, we assessed the contribution of the pro-inflammatory cytokine, interferon-gamma (IFN-gamma), to a range of PD-like pathology provoked by the ecologically relevant herbicide and dopamine (DA) toxin, paraquat. To this end, paraquat provoked overt motor impairment (reduced home-cage activity and impaired vertical climbing) and signs of anxiety-like behavior (reduced open field exploration) in wild-type but not IFN-gamma-deficient mice. Correspondingly, paraquat promoted somewhat divergent variations in neurochemical activity among wild-type and IFN-gamma null mice at brain sites important for both motor (striatum) and co-morbid affective pathologies (dorsal hippocampus, medial prefrontal cortex, and locus coeruleus). Specifically, the herbicide provoked a dosing regimen-dependent reduction in striatal DA levels that was prevented by IFN-gamma deficiency. In addition, the herbicide influenced serotonergic and noradrenergic activity within the dorsal hippocampus and medial prefrontal cortex; and elevated noradrenergic activity within the locus coeruleus. Although genetic ablation of IFN-gamma had relatively few effects on monoamine variations within the locus coeruleus and prefrontal cortex, loss of the pro-inflammatory cytokine did normalize the paraquat-induced noradrenergic alterations within the hippocampus. These findings further elucidate the functional implications of paraquat intoxication and suggest an important role for IFN-gamma in the striatal and motor pathology, as well as the co-morbid behavioral and hippocampal changes induced by paraquat.


European Journal of Neuroscience | 2008

Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice

Darcy Litteljohn; Emily N. Mangano; Shawn Hayley

Parkinson’s disease and other motor disorders of midbrain basal ganglia dopaminergic functioning are often characterized by alterations of brainstem and limbic systems with accompanying co‐morbid anxiety and depressive symptoms. Accumulating evidence suggests that inflammatory processes may play an important role in such neurodegenerative and psychiatric pathology. In this regard, inhibition of the inflammatory enzyme cyclooxygenase‐2 (COX‐2) was reported to limit the impact of stressors as well as the neurodegenerative effects of dopaminergic toxins. The present investigation assessed the impact of the putative dopamine toxin paraquat (a widely used herbicide) upon motor functioning, behavioural indices of anxiety‐like states and central monoamine levels and whether these effects were altered in mice lacking COX‐2. Indeed, paraquat did induce motor impairment and altered dopamine utilization within the striatum, and COX‐2 deletion moderately attenuated these effects. Conversely, COX‐2 deficiency enhanced the impact of paraquat upon indices of anxiety (open field exploration) and on serotonergic, noradrenergic and dopaminergic alterations within two brain regions implicated in stressor‐related pathologies, namely the dorsal hippocampus and medial prefrontal cortex. These results suggest that COX‐2 might differentially influence the motor and psychiatric symptoms associated with environmental toxin exposure. Furthermore, these data indicate that the neurochemical impact of paraquat is not restricted to the nigrostriatal dopamine pathway but also involves stressor‐sensitive limbic regions. It is possible that COX‐2 may play a dual role by contributing to the motor impairment induced by paraquat, but acting to moderate the effects of paraquat upon processes aligned with anxiety and depression.


Neurobiology of Disease | 2011

Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson's disease

Emily N. Mangano; S. Peters; Darcy Litteljohn; Remmick So; Cheri Bethune; Jessica Bobyn; Melanie M Clarke; Shawn Hayley

Parkinsons disease (PD) has been linked to exposure to a variety of chemical (e.g., pesticides) and inflammatory agents, which may act cumulatively over time. Finding novel means of limiting pathology associated with toxin exposure would have tremendous clinical importance. To this end, we assessed whether the hematopoietic trophic cytokine, granulocyte macrophage colony stimulating factor (GM-CSF), would inhibit the neurodegenerative effects of the pesticide, paraquat, administered either alone or following priming with the bacterial endotoxin, lipopolysaccharide (LPS). As previously observed, paraquat provoked a modest but significant neurodegenerative effect that was markedly augmented with LPS priming. Central infusion of GM-CSF into the substantia nigra pars compacta (SNc) prevented the loss of SNc dopamine neurons to a degree comparable to that of glial derived neurotrophic factor. Importantly, systemic administration of GM-CSF also had neuroprotective consequences, suggesting that the trophic cytokine can cross the blood brain barrier to promote neuronal survival. Indeed, GM-CSF acted to inhibit the LPS and paraquat induced microglial response, while augmenting astrocyte immunoreactivity within the SNc. Moreover, GM-CSF blunted the paraquat induced reduction of brain derived neurotrophic factor within the hippocampus, as well as in cultured mesencephalic neurons. Although paraquat reduced mesencephalic levels of the anti-apoptotic protein, Bcl-2, GM-CSF had no effect in this regard. Hence, GM-CSF appears to affect inflammatory and/or neuroplastic factors within the SNc that may be linked to neurodegeneration, as well as in other brain regions (hippocampus), which could be important for co-morbid non-motor symptoms in PD. These data suggest that peripheral GM-CSF administration might hold promise as a treatment of PD.


Brain Behavior and Immunity | 2010

Interferon-gamma deficiency modifies the effects of a chronic stressor in mice: Implications for psychological pathology

Darcy Litteljohn; Amie Cummings; Ashley Brennan; Anudip Gill; Siri Chunduri; Hymie Anisman; Shawn Hayley

Pro-inflammatory cytokines promote behavioral and neurochemical variations similar to those evident following stressor exposure, and have been implicated in promoting depressive illness. Indeed, immunotherapeutic application of the cytokine, interferon-alpha, promoted depressive illness in cancer and hepatitis C patients. We assessed the possibility that another interferon cytokine family member, interferon-gamma (IFN-gamma), might contribute to the behavioral and biochemical alterations provoked by a chronic stressor regimen that has been used to model neuropsychiatric pathology in rodents. As predicted, IFN-gamma-deficient mice displayed basal differences in behavior (e.g., reduced open field exploration) and altered neurochemical activity (e.g., increased noradrenergic and serotonergic activity within the central amygdala), relative to their wild-type counterparts. Moreover, stressor-induced elevations of corticosterone and the pro-inflammatory cytokine, tumor necrosis factor-alpha, were attenuated in IFN-gamma-deficient mice. Similarly, the IFN-gamma null mice were refractory to the chronic stressor-induced alterations of dopamine metabolism (within the prefrontal cortex, paraventricular nucleus of the hypothalamus and central amygdala) evident in wild-type mice. Yet, the chronic stressor provoked signs of anxiety (e.g., reduced open field exploration) and depression-like behavior (e.g., increased forced swim immobility, reduced consumption of a palatable solution) among both wild-type and IFN-gamma knockout mice alike, suggesting a dissociation of behavioral functioning from the stressor-induced alterations of immunological, hormonal and dopaminergic activity. Together, these data suggest a complex neurobehavioral phenotype, wherein IFN-gamma deletion engenders a state of heightened basal emotionality coupled with increased monoaminergic activity in the amygdala. At the same time, however, IFN-gamma deficiency appears to blunt some of the neurochemical, corticoid and cytokine alterations ordinarily associated with chronic stressor exposure.


PLOS ONE | 2013

Antidepressant-Like Effects of Erythropoietin: A Focus on Behavioural and Hippocampal Processes

Meagan Osborn; Nazneen Rustom; Melanie Clarke; Darcy Litteljohn; Chris Rudyk; Hymie Anisman; Shawn Hayley

Depression is a chronic and debilitating condition with a significant degree of relapse and treatment resistance that could stem, at least in part, from disturbances of neuroplasticity. This has led to an increased focus on treatment strategies that target brain derived neurotrophic factor (BDNF), synaptic plasticity and adult neurogenesis. In the current study we aimed to assess whether erythropoietin (EPO) would have antidepressant-like effects given its already established pro-trophic actions. In particular, we assessed whether EPO would diminish the deleterious effects of a social stressor in mice. Indeed, EPO induced anxiolytic and antidepressant-like responses in a forced swim test, open field, elevated-plus maze, and a novelty test, and appeared to blunt some of the negative behavioural effects of a social stressor. Furthermore, EPO promoted adult hippocampal neurogenesis, an important feature of effective antidepressants. Finally, a separate study using the mTOR inhibitor rapamycin revealed that antagonizing this pathway prevented the impact of EPO upon forced swim performance. These data are consistent with previous findings showing that the mTOR pathway and its neurogenic and synaptogenic effects might mediate the behavioral consequences of antidepressant agents. Our findings further highlight EPO as a possible adjunct treatment for affective disorders, as well as other stressor associated disorders of impaired neuroplasticity.


Neuroscience Letters | 2015

Gender and brain regions specific differences in brain derived neurotrophic factor protein levels of depressed individuals who died through suicide

Shawn Hayley; Lisheng Du; Darcy Litteljohn; Miklós Palkovits; Gabor Faludi; Zul Merali; Michael O. Poulter; Hymie Anisman

Considerable evidence supports the view that depressive illness and suicidal behaviour stem from perturbations of neuroplasticity. Presently, we assessed whether depressed individuals who died by suicide displayed brain region-specific changes in brain derived neurotrophic factor (BDNF) and whether such effects varied by gender. Using postmortem samples from non-psychiatric controls and depressed individuals who died by suicide, BDNF protein levels were assessed within the hippocampus and frontopolar prefrontal cortex using Western blot. As expected, BDNF levels were reduced within the frontopolar prefrontal cortex among female depressed suicides; however, males showed no such effect. Contrastingly, within the hippocampus, depressed male but not female suicides displayed significant reductions of BDNF protein levels. Although the mechanisms driving the gender and brain region specific BDNF changes are unclear, our data do support the notion that complex alterations of neuroplasticity may be fundamentally involved in the illness.


Neuropharmacology | 2017

Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes

Melanie Clarke; Sara Razmjou; Natalie Prowse; Zach Dwyer; Darcy Litteljohn; Rowan Pentz; Hymie Anisman; Shawn Hayley

ABSTRACT Considerable recent attention has focused on the rapid antidepressant effects observed in treatment resistant patients produced by the NMDA receptor antagonist, ketamine. Surprisingly, the effects of ketamine in the context of stressor exposure, as well as the consequences of its chronic use are unclear. Thus, we assessed the impact of acute and repeated ketamine treatment together with acute [restraint or lipopolysaccharide (LPS)] or chronic (unpredictable different psychogenic challenges) stressor exposure. Importantly, acute ketamine treatment did provoke an antidepressant‐like effect in a forced swim test (FST) and this effect lasted for 8 days following repeated exposure to the drug. Although acute restraint and LPS individually provoked the expected elevation of plasma corticosterone and brain‐region specific monoamine variations, ketamine had no influence on corticosterone and had, at best, sparse effects on the monoamine changes. Similarly, ketamine did not appreciably influence the stressor induced neurochemical and sucrose preference alterations, it did however, dose‐dependently reverse the LPS induced elevation of the pro‐inflammatory cytokines, interleukin‐1&bgr; (IL‐1&bgr;) and tumor necrosis factor‐&agr; (TNF‐&agr;). Likewise, repeated ketamine administration increased adult hippocampal neurogenesis. These data indicate that repeated ketamine administration had greater behavioral consequences than acute treatment and that the drug might be imparting antidepressant effects through its effects on neuroplasticity and inflammatory processes rather than the typical neurochemical/hormonal factors affected by stressors. This article is part of the Special Issue entitled ‘Ionotropic glutamate receptors’. HIGHLIGHTSEffects of acute and repeated ketamine treatment in stress‐exposed mice were examined.Repeated ketamine treatment prolonged antidepressant‐like effects in a forced swim test.Ketamine did not alter stress‐induced corticosterone or monoamine changes.Repeated ketamine treatment increased neurogenesis in the dentate gyrus of the hippocampus.Acute ketamine treatment reversed pro‐inflammatory cytokine production.

Collaboration


Dive into the Darcy Litteljohn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge