Dargan M. W. Frierson
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dargan M. W. Frierson.
Journal of Climate | 2008
Sarah M. Kang; Isaac M. Held; Dargan M. W. Frierson; Ming Zhao
Using a comprehensive atmospheric GCM coupled to a slab mixed layer ocean, experiments are performed to study the mechanism by which displacements of the intertropical convergence zone (ITCZ) are forced from the extratropics. The northern extratropics are cooled and the southern extratropics are warmed by an imposed cross-equatorial flux beneath the mixed layer, forcing a southward shift in the ITCZ. The ITCZ displacement can be understood in terms of the degree of compensation between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics. The magnitude of the ITCZ displacement is very sensitive to a parameter in the convection scheme that limits the entrainment into convective plumes. The change in the convection scheme affects the extratropical–tropical interactions in the model primarily by modifying the cloud response. The results raise the possibility that the response of tropical precipitation to extratropical thermal forcing, important for a variety of problems in climate dynamics (such as the response of the tropics to the Northern Hemisphere ice sheets during glacial maxima or to variations in the Atlantic meridional overturning circulation), may be strongly dependent on cloud feedback. The model configuration described here is suggested as a useful benchmark helping to quantify extratropical–tropical interactions in atmospheric models.
Journal of Climate | 2008
Jian Lu; Gang Chen; Dargan M. W. Frierson
The change in the zonal mean atmospheric circulation under global warming is studied in comparison with the response to El Nino forcing, by examining the model simulations conducted for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In contrast to the strengthening and contraction of the Hadley cell and the equatorward shift of the tropospheric zonal jets in response to El Nino, the Hadley cell weakens and expands poleward, and the jets move poleward in a warmed climate, despite the projected “El Nino–like” enhanced warming over the equatorial central and eastern Pacific. The hydrological impacts of global warming also exhibit distinct patterns over the subtropics and midlatitudes in comparison to the El Nino. Two feasible mechanisms are proposed for the zonal mean circulation response to global warming: 1) The increase in static stability of the subtropical and midlatitude troposphere, a robust result of the quasi-moist adiabatic adjustment to the surface warming, may stabilize the baroclinic eddy growth on the equatorward side of the storm tracks and push the eddy activity and the associated eddy-driven wind and subsidence poleward, leading to the poleward expansion of the Hadley cell and the shift of midlatitude jets; 2) the strengthening of the midlatitude wind at the upper troposphere and lower stratosphere, arguably a consequence of increases in the meridional temperature gradient near the tropopause level due to the tropospheric warming and tropopause slope, may increase the eastward propagation of the eddies emanating from the midlatitudes, and thus the subtropical region of wave breaking displaces poleward together with the eddy-driven circulation. Both mechanisms are somewhat, if not completely, distinct from those in response to the El Nino condition.
Journal of the Atmospheric Sciences | 2006
Dargan M. W. Frierson; Isaac M. Held; Pablo Zurita-Gotor
Abstract In this paper, a simplified moist general circulation model is developed and used to study changes in the atmospheric general circulation as the water vapor content of the atmosphere is altered. The key elements of the model physics are gray radiative transfer, in which water vapor and other constituents have no effect on radiative fluxes, a simple diffusive boundary layer with prognostic depth, and a mixed layer aquaplanet surface boundary condition. This GCM can be integrated stably without a convection parameterization, with large-scale condensation only, and this study focuses on this simplest version of the model. These simplifications provide a useful framework in which to focus on the interplay between latent heat release and large-scale dynamics. In this paper, the authors study the role of moisture in determining the tropospheric static stability and midlatitude eddy scale. In a companion paper, the effects of moisture on energy transports by baroclinic eddies are discussed. The authors ...
The Astrophysical Journal | 2001
John M. Blondin; Roger A. Chevalier; Dargan M. W. Frierson
For pulsars similar to the one in the Crab Nebula, most of the energy input to the surrounding wind nebula occurs on a timescale 103 yr; during this time, the nebula expands into freely expanding supernova ejecta. On a timescale ~104 yr, the interaction of the supernova with the surrounding medium drives a reverse shock front toward the center of the remnant, where it crushes the pulsar wind nebula (PWN). We have carried out one- and two-dimensional, two-fluid simulations of the crushing and reexpansion phases of a PWN. We show that (1) these phases are subject to Rayleigh-Taylor instabilities that result in the mixing of thermal and nonthermal fluids, and (2) asymmetries in the surrounding interstellar medium give rise to asymmetries in the position of the PWN relative to the pulsar and explosion site. These effects are expected to be observable in the radio emission from evolved PWN because of the long lifetimes of radio-emitting electrons. The scenario can explain the chaotic and asymmetric appearance of the Vela X PWN relative to the Vela pulsar without recourse to a directed flow from the vicinity of the pulsar. The displacement of the radio nebulae in G327.1-1.1, MSH 15-56 (G326.3-1.8), G0.9+0.1, and W44 relative to the X-ray nebulae may be due to this mechanism. On timescales much greater than the nebular crushing time, the initial PWN may be mixed with thermal gas and become unobservable, so that even the radio emission is dominated by recently injected particles.
Journal of the Atmospheric Sciences | 2009
Sarah M. Kang; Dargan M. W. Frierson; Isaac M. Held
Abstract The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors’ previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed toward the warmed hemisphere. Comparisons with a comprehensive GCM in an identical aquaplanet, mixed-layer framework reveal that the tropical responses tend to be much larger in the comprehensive GCM as a result of positive cloud and water vapor feedbacks that amplify the imposed extratropical thermal forcing. The magnitude of the tropical precipitation response in the idealized model is sensitive to convection scheme parameters. This sensitivity as well as the tropical precipitation response can be understood from a simple theory with two ingredients: the changes in poleward energy fluxes are predicted using a ...
Journal of Climate | 2012
Dargan M. W. Frierson; Yen-Ting Hwang
AbstractRecent studies with climate models have demonstrated the power of extratropical forcing in causing the intertropical convergence zone (ITCZ) to shift northward or southward, and paleoclimate data support the notion that there have been large shifts in the ITCZ over time. It is shown that similar notions apply to slab ocean simulations of global warming. Nine slab ocean model simulations from different modeling centers show a wide range of ITCZ shifts in response to doubling carbon dioxide concentrations, which are experienced in a rather zonally symmetric way in the tropics. Using an attribution strategy based on fundamental energetic constraints, it is shown that responses of clouds and ice in the extratropics explain much of the range of ITCZ responses. There are also some positive feedbacks within the tropics due to increasing water vapor content and high clouds in the new ITCZ location, which amplify the changes driven from the extratropics. This study shows the clear importance of simulating ...
Proceedings of the National Academy of Sciences of the United States of America | 2013
Yen-Ting Hwang; Dargan M. W. Frierson
The double-Intertropical Convergence Zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics, which resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double-ITCZ problem by performing a global energetic analysis with historical simulations from a suite of global climate models and comparing with satellite observations of the Earth’s energy budget. Our results show that models with more energy flux into the Southern Hemisphere atmosphere (at the top of the atmosphere and at the surface) tend to have a stronger double-ITCZ bias, consistent with recent theoretical studies that suggest that the ITCZ is drawn toward heating even outside the tropics. In particular, we find that cloud biases over the Southern Ocean explain most of the model-to-model differences in the amount of excessive precipitation in Southern Hemisphere tropics, and are suggested to be responsible for this aspect of the double-ITCZ problem in most global climate models.
Journal of Climate | 2011
Daehyun Kim; Adam H. Sobel; Eric D. Maloney; Dargan M. W. Frierson; In-Sik Kang
AbstractSystematic relationships between aspects of intraseasonal variability (ISV) and mean state bias are shown in a number of atmospheric general circulation model (AGCM) simulations. When AGCMs are categorized as either strong ISV or weak ISV models, it is shown that seasonal mean precipitation patterns are similar among models in the same group but are significantly different from those of the other group. Strong ISV models simulate excessive rainfall over the South Asian summer monsoon and the northwestern Pacific monsoon regions during boreal summer. Larger ISV amplitude also corresponds closely to a larger ratio of eastward-to-westward-propagating variance, but no model matches the observations in both quantities simultaneously; a realistic eastward-to-westward ratio is simulated only when variance exceeds that observed. Three sets of paired simulations, in which only one parameter in the convection scheme is changed to enhance the moisture sensitivity of convection, are used to explore the common...
Journal of the Atmospheric Sciences | 2007
Dargan M. W. Frierson
In this paper, the effect of a simple convection scheme on the zonally averaged tropical general circulation is examined within an idealized moist GCM to obtain broad classifications of the influence of convection on the Tropics. This is accomplished with a simplified convection scheme in the style of Betts and Miller. The scheme is utilized in a moist GCM with simplified physical parameterizations (gray radiation, with zonally symmetric, slab mixed layer ocean boundary conditions). Comparisons are made with simulations without a convection scheme [i.e., with large-scale condensation (LSC) only], with the moist convective adjustment (MCA) parameterization, and with various formulations and parameter sets with a simplified Betts–Miller (SBM) scheme. With the control run using the SBM scheme, the Tropics become quieter and less dependent on horizontal resolution as compared with the LSC or MCA simulations. The Hadley circulation mass transport is significantly reduced with the SBM scheme, as is the ITCZ precipitation. An important factor determining this behavior is the parameterization of shallow convection: without shallow convection, the convection scheme is largely ineffective at preventing convection from occurring at the grid scale. The sensitivities to convection scheme parameters are also examined. The simulations are remarkably insensitive to the convective relaxation time, and only mildly sensitive to the relative humidity of the reference profile, provided significant large-scale condensation is not allowed to occur. The changes in the zonally averaged tropical circulation that occur in all the simulations are understood based on the convective criteria of the schemes and the gross moist stability of the atmosphere.
Journal of Climate | 2008
Jia-Lin Lin; Myong-In Lee; Daehyun Kim; In-Sik Kang; Dargan M. W. Frierson
Abstract This study examines the impacts of convective parameterization and moisture convective trigger on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). Three different convection schemes are used, including the simplified Arakawa–Schubert (SAS) scheme, the Kuo (1974) scheme, and the moist convective adjustment (MCA) scheme, and a moisture convective trigger with variable strength is added to each scheme. The authors also conduct a “no convection” experiment with deep convection schemes turned off. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the Madden–Julian oscillation (MJO), Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves. The results show that both convective parameterization and the moisture convective trigger have significant impacts on...
Collaboration
Dive into the Dargan M. W. Frierson's collaboration.
Cooperative Institute for Research in Environmental Sciences
View shared research outputs