Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daria Salyakina is active.

Publication


Featured researches published by Daria Salyakina.


Nature | 2009

Common genetic variants on 5p14.1 associate with autism spectrum disorders

Kai Wang; Haitao Zhang; Deqiong Ma; Maja Bucan; Joseph T. Glessner; Brett S. Abrahams; Daria Salyakina; Marcin Imielinski; Jonathan P. Bradfield; Patrick Sleiman; Cecilia E. Kim; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Nagahide Takahashi; Takeshi Sakurai; Eric Rappaport; Clara M. Lajonchere; Jeffrey Munson; Annette Estes; Olena Korvatska; Joseph Piven; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Edward I. Herman; Hongmei Dong; Ted Hutman; Marian Sigman; Sally Ozonoff; Ami Klin

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10-8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10-8 to 2.1 × 10-10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Annals of Human Genetics | 2009

A Genome-wide Association Study of Autism Reveals a Common Novel Risk Locus at 5p14.1

Deqiong Ma; Daria Salyakina; James M. Jaworski; Ioanna Konidari; Ashley Andersen; Joshua Hoffman; Susan Slifer; Dale J. Hedges; Holly N. Cukier; Anthony J. Griswold; Jacob L. McCauley; Gary W. Beecham; Harry H. Wright; Ruth K. Abramson; Eden R. Martin; John P. Hussman; John R. Gilbert; Michael L. Cuccaro; Jonathan L. Haines; Margaret A. Pericak-Vance

Although autism is one of the most heritable neuropsychiatric disorders, its underlying genetic architecture has largely eluded description. To comprehensively examine the hypothesis that common variation is important in autism, we performed a genome‐wide association study (GWAS) using a discovery dataset of 438 autistic Caucasian families and the Illumina Human 1M beadchip. 96 single nucleotide polymorphisms (SNPs) demonstrated strong association with autism risk (p‐value < 0.0001). The validation of the top 96 SNPs was performed using an independent dataset of 487 Caucasian autism families genotyped on the 550K Illumina BeadChip. A novel region on chromosome 5p14.1 showed significance in both the discovery and validation datasets. Joint analysis of all SNPs in this region identified 8 SNPs having improved p‐values (3.24E‐04 to 3.40E‐06) than in either dataset alone. Our findings demonstrate that in addition to multiple rare variations, part of the complex genetic architecture of autism involves common variation.


Molecular Autism | 2011

A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism

John P. Hussman; Ren Hua Chung; Anthony J. Griswold; James M. Jaworski; Daria Salyakina; Deqiong Ma; Ioanna Konidari; Jeffery M. Vance; Eden R. Martin; Michael L. Cuccaro; John R. Gilbert; Jonathan L. Haines; Margaret A. Pericak-Vance

BackgroundGenome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism.MethodsGWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fishers methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology.ResultsComputer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fishers methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.ConclusionsAs statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.


Human Molecular Genetics | 2012

Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways

Anthony J. Griswold; Deqiong Ma; Holly N. Cukier; Laura Nations; Mike Schmidt; Ren Hua Chung; James M. Jaworski; Daria Salyakina; Ioanna Konidari; Harry H. Wright; Ruth K. Abramson; Scott M. Williams; Ramkumar Menon; Eden R. Martin; Jonathan L. Haines; John R. Gilbert; Michael L. Cuccaro; Margaret A. Pericak-Vance

Autism spectrum disorders (ASDs) are highly heritable, yet relatively few associated genetic loci have been replicated. Copy number variations (CNVs) have been implicated in autism; however, the majority of loci contribute to <1% of the disease population. Therefore, independent studies are important to refine associated CNV regions and discover novel susceptibility genes. In this study, a genome-wide SNP array was utilized for CNV detection by two distinct algorithms in a European ancestry case-control data set. We identify a significantly higher burden in the number and size of deletions, and disrupting more genes in ASD cases. Moreover, 18 deletions larger than 1 Mb were detected exclusively in cases, implicating novel regions at 2q22.1, 3p26.3, 4q12 and 14q23. Case-specific CNVs provided further evidence for pathways previously implicated in ASDs, revealing new candidate genes within the GABAergic signaling and neural development pathways. These include DBI, an allosteric binder of GABA receptors, GABARAPL1, the GABA receptor-associated protein, and SLC6A11, a postsynaptic GABA transporter. We also identified CNVs in COBL, deletions of which cause defects in neuronal cytoskeleton morphogenesis in model vertebrates, and DNER, a neuron-specific Notch ligand required for cerebellar development. Moreover, we found evidence of genetic overlap between ASDs and other neurodevelopmental and neuropsychiatric diseases. These genes include glutamate receptors (GRID1, GRIK2 and GRIK4), synaptic regulators (NRXN3, SLC6A8 and SYN3), transcription factor (ZNF804A) and RNA-binding protein FMR1. Taken together, these CNVs may be a few of the missing pieces of ASD heritability and lead to discovering novel etiological mechanisms.


PLOS ONE | 2011

Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk

Daria Salyakina; Holly N. Cukier; Joycelyn M. Lee; Stephanie Sacharow; Laura Nations; Deqiong Ma; James M. Jaworski; Ioanna Konidari; Harry H. Wright; Ruth K. Abramson; Scott M. Williams; Ramkumar Menon; Jonathan L. Haines; John R. Gilbert; Michael L. Cuccaro; Margaret A. Pericak-Vance

Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology.


Autism Research | 2010

Variants in several genomic regions associated with asperger disorder

Daria Salyakina; Deqiong Ma; James M. Jaworski; Ioanna Konidari; R. Henson; D. Martinez; Joycelyn L. Robinson; Stephanie Sacharow; Harry H. Wright; Ruth K. Abramson; John R. Gilbert; Michael L. Cuccaro; Margaret A. Pericak-Vance

Asperger disorder (ASP) is one of the autism spectrum disorders (ASD) and is differentiated from autism largely on the absence of clinically significant cognitive and language delays. Analysis of a homogenous subset of families with ASP may help to address the corresponding effect of genetic heterogeneity on identifying ASD genetic risk factors. To examine the hypothesis that common variation is important in ASD, we performed a genome‐wide association study (GWAS) in 124 ASP families in a discovery data set and 110 ASP families in a validation data set. We prioritized the top 100 association results from both cohorts by employing a ranking strategy. Novel regions on 5q21.1 (P = 9.7 × 10−7) and 15q22.1–q22.2 (P = 7.3 × 10−6) were our most significant findings in the combined data set. Three chromosomal regions showing association, 3p14.2 (P = 3.6 × 10−6), 3q25–26 (P = 6.0 × 10–5) and 3p23 (P = 3.3 × 10−4) overlapped linkage regions reported in Finnish ASP families, and eight association regions overlapped ASD linkage areas. Our findings suggest that ASP shares both ASD‐related genetic risk factors, as well as has genetic risk factors unique to the ASP phenotype.


Human Genomics | 2013

Viral expression associated with gastrointestinal adenocarcinomas in TCGA high-throughput sequencing data.

Daria Salyakina; Nicholas F. Tsinoremas

BackgroundUp to 20% of cancers worldwide are thought to be associated with microbial pathogens, including bacteria and viruses. The widely used methods of viral infection detection are usually limited to a few a priori suspected viruses in one cancer type. To our knowledge, there have not been many broad screening approaches to address this problem more comprehensively.MethodsIn this study, we performed a comprehensive screening for viruses in nine common cancers using a multistep computational approach. Tumor transcriptome and genome sequencing data were available from The Cancer Genome Atlas (TCGA). Nine hundred fifty eight primary tumors in nine common cancers with poor prognosis were screened against a non-redundant database of virus sequences. DNA sequences from normal matched tissue specimens were used as controls to test whether each virus is associated with tumors.ResultsWe identified human papilloma virus type 18 (HPV-18) and four human herpes viruses (HHV) types 4, 5, 6B, and 8, also known as EBV, CMV, roseola virus, and KSHV, in colon, rectal, and stomach adenocarcinomas. In total, 59% of screened gastrointestinal adenocarcinomas (GIA) were positive for at least one virus: 26% for EBV, 21% for CMV, 7% for HHV-6B, and 20% for HPV-18. Over 20% of tumors were co-infected with multiple viruses. Two viruses (EBV and CMV) were statistically significantly associated with colorectal cancers when compared to the matched healthy tissues from the same individuals (p = 0.02 and 0.03, respectively). HPV-18 was not detected in DNA, and thus, no association testing was possible. Nevertheless, HPV-18 expression patterns suggest viral integration in the host genome, consistent with the potentially oncogenic nature of HPV-18 in colorectal adenocarcinomas. The estimated counts of viral copies were below one per cell for all identified viruses and approached the detection limit.ConclusionsOur comprehensive screening for viruses in multiple cancer types using next-generation sequencing data clearly demonstrates the presence of viral sequences in GIA. EBV, CMV, and HPV-18 are potentially causal for GIA, although their oncogenic role is yet to be established.


Frontiers in Immunology | 2015

Distinct Transcriptomic Features are Associated with Transitional and Mature B-Cell Populations in the Mouse Spleen

Eden Kleiman; Daria Salyakina; Magali de Heusch; Kristen L. Hoek; Joan M. Llanes; Iris Castro; Jacqueline A. Wright; Emily S. Clark; Derek M. Dykxhoorn; Enrico Capobianco; Akiko Takeda; Ryan McCormack; Eckhard R. Podack; Jean-Christophe Renauld; Wasif N. Khan

Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features.Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features.


Frontiers in Oncology | 2015

Human Papilloma Viruses and Breast Cancer

James S. Lawson; Wendy K. Glenn; Daria Salyakina; Warick Delprado; Rosemary Clay; Annika Antonsson; Benjamin Heng; Shingo Miyauchi; Dinh Tran; Christopher C. Ngan; Louise Lutze-Mann; Noel J. Whitaker

Purpose Human papillomaviruses (HPV) may have a role in some breast cancers. The purpose of this study is to fill important gaps in the evidence. These gaps are: (i) confirmation of the presence of high risk for cancer HPVs in breast cancers, (ii) evidence of HPV infections in benign breast tissues prior to the development of HPV-positive breast cancer in the same patients, (iii) evidence that HPVs are biologically active and not harmless passengers in breast cancer. Methods RNA-seq data from The Cancer Genome Atlas (TCGA) was used to identify HPV RNA sequences in breast cancers. We also conducted a retrospective cohort study based on polymerase chain reaction (PCR) analyses to identify HPVs in archival specimens from Australian women with benign breast biopsies who later developed breast cancer. To assess whether HPVs in breast cancer were biologically active, the expression of the oncogenic protein HPV E7 was assessed by immunohistochemistry (IHC). Results Thirty (3.5%) low-risk and 20 (2.3%) high-risk HPV types were identified in 855 breast cancers from the TCGA database. The high risk types were HPV 18 (48%), HPV 113 (24%), HPV 16 (10%), HPV 52 (10%). Data from the PCR cohort study indicated that HPV type 18 was the most common type identified in breast cancer specimens (55% of 40 breast cancer specimens) followed by HPV 16 (13%). The same HPV type was identified in both the benign and subsequent breast cancer in 15 patients. HPV E7 proteins were identified in 72% of benign breast specimens and 59% of invasive breast cancer specimens. Conclusion There were four observations of particular interest: (i) confirmation by both NGS and PCR of the presence of high-risk HPV gene sequences in breast cancers, (ii) a correlation between high-risk HPV in benign breast specimens and subsequent HPV-positive breast cancer in the same patient, (iii) HPVs in breast cancer are likely to be biologically active (as shown by transcription of HPV DNA to RNA plus the expression of HPV E7 proteins), (iv) HPV oncogenic influences may occur early in the development of breast cancer.


npj Genomic Medicine | 2016

Non-coding RNAs profiling in head and neck cancers

Daria Salyakina; Nicholas F. Tsinoremas

The majority of studies on human cancers published to date focus on coding genes. More recently, however, non-coding RNAs (ncRNAs) are gaining growing recognition as important regulatory components. Here we characterise the ncRNA landscape in 442 head and neck squamous cell carcinomas (HNSCs) from the cancer genome atlas (TCGA). HNSCs represent an intriguing case to study the potential role of ncRNA as a function of viral presence, especially as HPV is potentially oncogenic. Thus, we identify HPV16-positive (HPV16+) and HPV-negative (HPV−) tumours and study the expression of ncRNAs on both groups. Overall, the ncRNAs comprise 36% of all differentially expressed genes, with antisense RNAs being the most represented ncRNA type (12.6%). Protein-coding genes appear to be more frequently downregulated in tumours compared with controls, whereas ncRNAs show significant upregulation in tumours, especially in HPV16+ tumours. Overall, expression of pseudogenes, antisense and short RNAs is elevated in HPV16+ tumours, while the remaining long non-coding RNA types are more active in all HNSC tumours independent of HPV status. In addition, we identify putative regulatory targets of differentially expressed ncRNAs. Among these ‘targets’ we find several well-established oncogenes, tumour suppressors, cytokines, growth factors and cell differentiation genes, which indicates the potential involvement of ncRNA in the control of these key regulators as a direct consequence of HPV oncogenic activity. In conclusion, our findings establish the ncRNAs as crucial transcriptional components in HNSCs. Our results display the great potential for the study of ncRNAs and the role they have in human cancers.

Collaboration


Dive into the Daria Salyakina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry H. Wright

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ruth K. Abramson

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge