Darina Khimich
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darina Khimich.
Nature | 2005
Darina Khimich; Régis Nouvian; Rémy Pujol; Susanne tom Dieck; Alexander Egner; Eckart D. Gundelfinger; Tobias Moser
Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). At present, the function of presynaptic ribbons at these synapses is still largely unknown. Here we show that anchoring of IHC ribbons is impaired in mouse mutants for the presynaptic scaffolding protein Bassoon. The lack of active-zone-anchored synaptic ribbons reduced the presynaptic readily releasable vesicle pool, and impaired synchronous auditory signalling as revealed by recordings of exocytic IHC capacitance changes and sound-evoked activation of spiral ganglion neurons. Both exocytosis of the hair cell releasable vesicle pool and the number of synchronously activated spiral ganglion neurons co-varied with the number of anchored ribbons during development. Interestingly, ribbon-deficient IHCs were still capable of sustained exocytosis with normal Ca2+-dependence. Endocytic membrane retrieval was intact, but an accumulation of tubular and cisternal membrane profiles was observed in ribbon-deficient IHCs. We conclude that ribbon-dependent synchronous release of multiple vesicles at the hair cell afferent synapse is essential for normal hearing.
The Journal of Neuroscience | 2005
Andreas Brandt; Darina Khimich; Tobias Moser
Hearing relies on faithful sound coding at hair cell ribbon synapses, which use Ca2+-triggered glutamate release to signal with submillisecond precision. Here, we investigated stimulus–secretion coupling at mammalian inner hair cell (IHC) synapses to explore the mechanisms underlying this high temporal fidelity. Using nonstationary fluctuation analysis on Ca2+ tail currents, we estimate that IHCs contain ∼1700 Ca2+ channels, mainly of CaV1.3 type. We show by immunohistochemistry that the CaV1.3 Ca2+ channels are localized preferentially at the ribbon-type active zones of IHCs. We argue that each active zone holds ∼80 Ca2+ channels, of which probably <10 open simultaneously during physiological stimulation. We then manipulated the Ca2+ current by primarily changing single-channel current or open-channel number. Effects on exocytosis of the readily releasable vesicle pool (RRP) were monitored by membrane capacitance recordings. Consistent with the high intrinsic Ca2+ cooperativity of exocytosis, RRP exocytosis changed nonlinearly with the Ca2+ current when varying the single-channel current. In contrast, the apparent Ca2+ cooperativity of RRP exocytosis was close to unity when primarily manipulating the number of open channels. Our findings suggest a Ca2+ channel–release site coupling in which few nearby CaV1.3 channels impose high nanodomain [Ca2+] on release sites in IHCs during physiological stimulation. We postulate that the IHC ribbon synapse uses this Ca2+ nanodomain control of exocytosis to signal with high temporal precision already at low sound intensities.
Nature Neuroscience | 2009
Alexander C. Meyer; Thomas Frank; Darina Khimich; Gerhard Hoch; Dietmar Riedel; Nikolai M. Chapochnikov; Yury M Yarin; Benjamin Harke; Stefan W. Hell; Alexander Egner; Tobias Moser
Cochlear inner hair cells (IHCs) transmit acoustic information to spiral ganglion neurons through ribbon synapses. Here we have used morphological and physiological techniques to ask whether synaptic mechanisms differ along the tonotopic axis and within IHCs in the mouse cochlea. We show that the number of ribbon synapses per IHC peaks where the cochlea is most sensitive to sound. Exocytosis, measured as membrane capacitance changes, scaled with synapse number when comparing apical and midcochlear IHCs. Synapses were distributed in the subnuclear portion of IHCs. High-resolution imaging of IHC synapses provided insights into presynaptic Ca2+ channel clusters and Ca2+ signals, synaptic ribbons and postsynaptic glutamate receptor clusters and revealed subtle differences in their average properties along the tonotopic axis. However, we observed substantial variability for presynaptic Ca2+ signals, even within individual IHCs, providing a candidate presynaptic mechanism for the divergent dynamics of spiral ganglion neuron spiking.
The EMBO Journal | 2006
Tatjana Kharkovets; Karin Dedek; Hannes Maier; Michaela Schweizer; Darina Khimich; Régis Nouvian; Vitya Vardanyan; Rudolf Leuwer; Tobias Moser; Thomas J. Jentsch
KCNQ4 is an M‐type K+ channel expressed in sensory hair cells of the inner ear and in the central auditory pathway. KCNQ4 mutations underlie human DFNA2 dominant progressive hearing loss. We now generated mice in which the KCNQ4 gene was disrupted or carried a dominant negative DFNA2 mutation. Although KCNQ4 is strongly expressed in vestibular hair cells, vestibular function appeared normal. Auditory function was only slightly impaired initially. It then declined over several weeks in Kcnq4−/− mice and over several months in mice carrying the dominant negative allele. This progressive hearing loss was paralleled by a selective degeneration of outer hair cells (OHCs). KCNQ4 disruption abolished the IK,n current of OHCs. The ensuing depolarization of OHCs impaired sound amplification. Inner hair cells and their afferent synapses remained mostly intact. These cells were only slightly depolarized and showed near‐normal presynaptic function. We conclude that the hearing loss in DFNA2 is predominantly caused by a slow degeneration of OHCs resulting from chronic depolarization.
Neuron | 2010
Thomas Frank; Mark A. Rutherford; Nicola Strenzke; Andreas Neef; Tina Pangršič; Darina Khimich; Anna Fejtova; Eckart D. Gundelfinger; M. Charles Liberman; Benjamin Harke; Keith E. Bryan; Amy Lee; Alexander Egner; Dietmar Riedel; Tobias Moser
At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the ribbon--showed a reduction in membrane-proximal vesicles, with ribbonless synapses affected more than ribbon-occupied synapses. Ca²+ channels were also fewer at mutant synapses and appeared in abnormally shaped clusters. Ribbon absence reduced Ca²+ channel numbers at mutant and wild-type synapses. Fast and sustained exocytosis was reduced, notwithstanding normal coupling of the remaining Ca²+ channels to exocytosis. In vitro recordings revealed a slight impairment of vesicle replenishment. Mechanistic modeling of the in vivo data independently supported morphological and functional in vitro findings. We conclude that Bassoon and the ribbon (1) create a large number of release sites by organizing Ca²+ channels and vesicles, and (2) promote vesicle replenishment.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Thomas Frank; Darina Khimich; Andreas Neef; Tobias Moser
Sound coding at hair cell ribbon synapses is tightly regulated by Ca2+. Here, we used patch-clamp, fast confocal Ca2+ imaging and modeling to characterize synaptic Ca2+ signaling in cochlear inner hair cells (IHCs) of hearing mice. Submicrometer fluorescence hotspots built up and collapsed at the base of IHCs within a few milliseconds of stimulus onset and cessation. They most likely represented Ca2+ microdomains arising from synaptic Ca2+ influx through CaV1.3 channels. Synaptic Ca2+ microdomains varied substantially in amplitude and voltage dependence even within single IHCs. Testing putative mechanisms for the heterogeneity of Ca2+ signaling, we found the amplitude variability unchanged when blocking mitochondrial Ca2+ uptake or Ca2+-induced Ca2+ release, buffering cytosolic Ca2+ by millimolar concentrations of EGTA, or elevating the Ca2+ channel open probability by the dihydropyridine agonist BayK8644. However, we observed substantial variability also for the fluorescence of immunolabeled CaV1.3 Ca2+ channel clusters. Moreover, the Ca2+ microdomain amplitude correlated positively with the size of the corresponding synaptic ribbon. Ribbon size, previously suggested to scale with the number of synaptic Ca2+ channels, was approximated by using fluorescent peptide labeling. We propose that IHCs adjust the number and the gating of CaV1.3 channels at their active zones to diversify their transmitter release rates.
The Journal of Physiology | 2006
Tobias Moser; Andreas Neef; Darina Khimich
Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea.
The Journal of Neuroscience | 2009
Nicola Strenzke; Soham Chanda; Cornelia Kopp-Scheinpflug; Darina Khimich; Kerstin Reim; Anna V. Bulankina; Andreas Neef; Fred Wolf; Nils Brose; Matthew A. Xu-Friedman; Tobias Moser
Complexins (CPXs I–IV) presumably act as regulators of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, but their function in the intact mammalian nervous system is not well established. Here, we explored the role of CPXs in the mouse auditory system. Hearing was impaired in CPX I knock-out mice but normal in knock-out mice for CPXs II, III, IV, and III/IV as measured by auditory brainstem responses. Complexins were not detectable in cochlear hair cells but CPX I was expressed in spiral ganglion neurons (SGNs) that give rise to the auditory nerve. Ca2+-dependent exocytosis of inner hair cells and sound encoding by SGNs were unaffected in CPX I knock-out mice. In the absence of CPX I, the resting release probability in the endbulb of Held synapses of the auditory nerve fibers with bushy cells in the cochlear nucleus was reduced. As predicted by computational modeling, bushy cells had decreased spike rates at sound onset as well as longer and more variable first spike latencies explaining the abnormal auditory brainstem responses. In addition, we found synaptic transmission to outlast the stimulus at many endbulb of Held synapses in vitro and in vivo, suggesting impaired synchronization of release to stimulus offset. Although sound encoding in the cochlea proceeds in the absence of complexins, CPX I is required for faithful processing of sound onset and offset in the cochlear nucleus.
The Journal of Neuroscience | 2013
Zhizi Jing; Mark A. Rutherford; Hideki Takago; Thomas Frank; Anna Fejtova; Darina Khimich; Tobias Moser; Nicola Strenzke
Inner hair cells (IHCs) of the cochlea use ribbon synapses to transmit auditory information faithfully to spiral ganglion neurons (SGNs). In the present study, we used genetic disruption of the presynaptic scaffold protein bassoon in mice to manipulate the morphology and function of the IHC synapse. Although partial-deletion mutants lacking functional bassoon (BsnΔEx4/5) had a near-complete loss of ribbons from the synapses (up to 88% ribbonless synapses), gene-trap mutants (Bsngt) showed weak residual expression of bassoon and 56% ribbonless synapses, whereas the remaining 44% had a loosely anchored ribbon. Patch-clamp recordings and synaptic CaV1.3 immunolabeling indicated a larger number of Ca2+ channels for Bsngt IHCs compared with BsnΔEx4/5 IHCs and for Bsngt ribbon-occupied versus Bsngt ribbonless synapses. An intermediate phenotype of Bsngt IHCs was also found by membrane capacitance measurements for sustained exocytosis, but not for the size of the readily releasable vesicle pool. The frequency and amplitude of EPSCs were reduced in BsnΔEx4/5 mouse SGNs, whereas their postsynaptic AMPA receptor clusters were largely unaltered. Sound coding in SGN, assessed by recordings of single auditory nerve fibers and their population responses in vivo, was similarly affected in Bsngt and BsnΔEx4/5 mice. Both genotypes showed impaired sound onset coding and reduced evoked and spontaneous spike rates. In summary, reduced bassoon expression or complete lack of full-length bassoon impaired sound encoding to a similar extent, which is consistent with the comparable reduction of the readily releasable vesicle pool. This suggests that the remaining loosely anchored ribbons in Bsngt IHCs were functionally inadequate or that ribbon independent mechanisms dominated the coding deficit.
The Journal of Neuroscience | 2007
Andreas Neef; Darina Khimich; Primoz Pirih; Dietmar Riedel; Fred Wolf; Tobias Moser
Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). Postsynaptic recordings from this synapse in prehearing animals had delivered strong indications for synchronized release of several vesicles. The underlying mechanism, however, remains unclear. Here, we used presynaptic membrane capacitance measurements to test whether IHCs release vesicles in a statistically independent or dependent (coordinated) manner. Exocytic changes of membrane capacitance (ΔCm) were repeatedly stimulated in IHCs of prehearing and hearing mice by short depolarizations to preferentially recruit the readily releasable pool of synaptic vesicles. A compound Poisson model was devised to describe hair cell exocytosis and to test the analysis. From the trial-to-trial fluctuations of the ΔCm we were able to estimate the apparent size of the elementary fusion event (Capp) at the hair cell synapse to be 96–223 aF in immature and 55–149 aF in mature IHCs. We also approximated the single vesicle capacitance in IHCs by measurements of synaptic vesicle diameters in electron micrographs. The results (immature, 48 aF; mature, 45 aF) were lower than the respective Capp estimates. This indicates that coordinated exocytosis of synaptic vesicles occurs at both immature and mature hair cell synapses. Approximately 35% of the release events in mature IHCs and ∼50% in immature IHCs were predicted to involve coordinated fusion, when assuming a geometric distribution of elementary sizes. In summary, our presynaptic measurements indicate coordinated exocytosis but argue for a lesser degree of coordination than suggested by postsynaptic recordings.