Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dario Amirante is active.

Publication


Featured researches published by Dario Amirante.


Journal of Turbomachinery-transactions of The Asme | 2012

Thermo-Mechanical Finite Element Analysis/Computational Fluid Dynamics Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy

Dario Amirante; Nicholas J. Hills; Christopher J. Barnes

The optimization of heat transfer between fluid and metal plays a crucial role in gas turbine design. An accurate prediction of temperature for each metal component can help to minimize the coolant flow requirement, with a direct reduction of the corresponding loss in the thermodynamic cycle. Traditionally, in industry fluid and solid simulations are conducted separately. The prediction of metal stresses and temperatures, generally based on finite element analysis, requires the definition of a thermal model whose reliability is largely dependent on the validity of the boundary conditions prescribed on the solid surface. These boundary conditions are obtained from empirical correlations expressing local conditions as a function of working parameters of the entire system, with validation being supplied by engine testing. However, recent studies have demonstrated the benefits of employing coupling techniques, whereby computational fluid dynamics (CFD) is used to predict the heat flux from the air to the metal, and this is coupled to the thermal analysis predicting metal temperatures. This paper describes an extension of this coupling process, accounting for the thermo-mechanical distortion of the metal through the engine cycle. Two distinct codes, a finite element analysis (FEA) solver for thermo-mechanical analysis and a finite volume solver for CFD, are iteratively coupled to produce temperatures and deformations of the solid part through an engine cycle. At each time step, the CFD mesh is automatically adapted to the FEA prediction of the metal position using efficient spring analogy methods, ensuring the continuity of the coupled process. As an example of this methodology, the cavity flow in a turbine stator well is investigated. In this test case, there is a strong link between the thermo-mechanical distortion, governing the labyrinth seal clearance, and the amount of flow through the stator well, which determines the resulting heat transfer in the stator well. This feedback loop can only be resolved by including the thermo-mechanical distortion within the coupling process


Journal of Turbomachinery-transactions of The Asme | 2015

Large-Eddy Simulations of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstruction Techniques

Dario Amirante; Nicholas J. Hills

Large-eddy simulations (LES) of wall bounded, low Mach number turbulent flows are conducted using an unstructured finite-volume solver of the compressible flow equations. The numerical method employs linear reconstructions of the primitive variables based on the least-squares approach of Barth. The standard Smagorinsky model is adopted as the subgrid term. The artificial viscosity inherent to the spatial discretization is maintained as low as possible reducing the dissipative contribution embedded in the approximate Riemann solver to the minimum necessary. Comparisons are also discussed with the results obtained using the implicit LES (ILES) procedure. Two canonical test-cases are described: a fully developed pipe flow at a bulk Reynolds number Reb = 44 × 103 based on the pipe diameter, and a confined rotor–stator flow at the rotational Reynolds number ReΩ = 4 × 105 based on the outer radius. In both cases, the mean flow and the turbulent statistics agree well with existing direct numerical simulations (DNS) or experimental data.


ASME Turbo Expo 2010: Power for Land, Sea, and Air | 2010

THERMO-MECHANICAL FEA/CFD COUPLING OF AN INTERSTAGE SEAL CAVITY USING TORSIONAL SPRING ANALOGY

Dario Amirante; Nicholas J. Hills; Christopher J. Barnes

The optimisation of heat transfer between fluid and metal plays a crucial role in gas turbine design. An accurate prediction of temperature for each metal component can help to minimise the coolant flow requirement, with a direct reduction of the corresponding loss in the thermodynamic cycle. Traditionally, in industry fluid and solid simulations are conducted separately. The prediction of metal stresses and temperatures, generally based on finite element analysis, requires the definition of a thermal model whose reliability is largely dependent on the validity of the boundary conditions prescribed on the solid surface. These boundary conditions are obtained from empirical correlations expressing local conditions as a function of working parameters of the entire system, with validation being supplied by engine testing. However, recent studies have demonstrated the benefits of employing coupling techniques, whereby computational fluid dynamics (CFD) is used to predict the heat flux from the air to the metal, and this is coupled to the thermal analysis predicting metal temperatures. This paper describes an extension of this coupling process, accounting for the thermo-mechanical distortion of the metal through the engine cycle. Two distinct codes, a finite element analysis (FEA) solver for thermo-mechanical analysis and a finite volume solver for CFD, are iteratively coupled to produce temperatures and deformations of the solid part through an engine cycle. At each time step, the CFD mesh is automatically adapted to the FEA prediction of the metal position using efficient spring analogy methods, ensuring the continuity of the coupled process. As an example of this methodology, the cavity flow in a turbine stator well is investigated. In this test case, there is a strong link between the thermo-mechanical distortion, governing the labyrinth seal clearance, and the amount of flow through the stator well, which determines the resulting heat transfer in the stator well. This feedback loop can only be resolved by including the thermo-mechanical distortion within the coupling process.Copyright


12<sup>th</sup> European Conference on Turbomachinery Fluid dynamics & Thermodynamics | 2017

Numerical Studies of Turbine Rim Sealing Flows on a Chute Seal Configuration

Feng Gao; John W. Chew; Paul F. Beard; Dario Amirante; Nicholas J. Hills

This paper presents CFD (computational fluid dynamics) modelling of a chute type rim seal that has been previously experimentally investigated. The study focuses on inherent large-scale unsteadiness rather than that imposed by vanes and blades or external flow. A large-eddy simulation (LES) solver is validated for a pipe flow test case and then applied to the chute rim seal rotor/stator cavity. LES, Reynolds-averaged Navier-Stokes (RANS) and unsteady RANS (URANS) models all showed reasonable agreement with steady measurements within the disc cavity, but only the LES shows unsteadiness at a similar distinct peak frequency to that found in the experiment, at 23 times the rotational frequency. However, there are some significant differences between unsteadiness predicted and the measurements, and possible causes of these are discussed.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2014

Uncertainty Quantification, Rare Events, and Mission Optimization: Stochastic Variations of Metal Temperature During a Transient

Francesco Montomoli; Dario Amirante; Nicholas J. Hills; Shahrokh Shahpar; M. Massini

Gas turbines are designed to follow specific missions and the metal temperature is usually predicted with deterministic methods. However, in real life the mission is subjected to strong variations which can affect the thermal response of the components. This paper presents a stochastic analysis of the metal temperature variations during a gas turbine transient.A Monte Carlo Method (MCM) with Meta Model is used to evaluate the probability distribution of the stator disk temperature. The MCM is applied to a series of CFD simulations of a stator well, whose geometry is modified according to the deformations predicted during the engine cycle by a coupled thermo-mechanical analysis of the metal components. It is shown that even considering a narrow band for the stochastic output, +/− σ, the transient thermal gradients can be up to two orders of magnitude greater than those obtained with a standard deterministic analysis. Moreover, a small variation in the tail of the input probability density function, a rare event, can have serious consequences on the uncertainty level of the temperature.Rare events although inevitable they are not usually considered during the design phase. In this paper it is shown for the first time that is possible to mitigate their effect, minimizing the maximum standard deviation induced by the tail of the input PDF. The mission optimization reduces the maximum standard deviation by 15% and the mean standard deviation of about 12%. The maximum thermal gradients are also reduced by 10%, although this was not the parameter used as the goal in the optimisation study.Copyright


ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012

USE OF DYNAMIC MESHES FOR TRANSIENT METAL TEMPERATURE PREDICTION

Dario Amirante; Nicholas J. Hills; Christopher J. Barnes

This paper describes the thermal analysis conducted on a three-dimensional model of a stator well contained within a turbine assembly. A methodology has been developed for coupled fluid-solid modelling accounting for the boundary deflections predicted by the structural analysis. The coupling is obtained through an iterative process between a finite element code (FEA) performing structural and thermal analysis for the solid part, and a finite volume solver for the CFD. As the engine runs transiently through a specified flight cycle, the FEA predictions of metal deformations and temperatures are passed to the CFD code, which in turns computes the heat fluxes over the metal surfaces. A robust moving mesh technique is used to automatically modify an initial mesh, based on the cold geometry, to the time dependent boundary deflections. Thus, the methodology guarantees that the CFD is always carried out on the hot-running geometry.A thorough investigation into the flow physics involved in the stator well is conducted. It is shown that an accurate thermal modelling for transient regimes necessitates the correct prediction of the time dependent clearances present in the system. Even small changes in the clearances may cause a transition between different dynamic behaviours, egress or ingestion, ultimately leading to drastically different thermal responses.Copyright


Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy | 2017

CFD Simulation of Blade Flows With High Amplitude Pitching

Ramesh Kumar; John W. Chew; Dario Amirante; Joseba Murua; Nicholas J. Hills

Large and flexible wind turbine blades may be susceptible to severe blade deformations coupled with dynamic stall. To advance prediction capability for this problem a general deforming mesh computational fluid dynamics (CFD) method has been developed for calculating flows with moving or deforming boundaries using an elastic spring analogy. The method has been evaluated against experimental data for flow around a pitching NACA0012 airfoil in the deep dynamic stall regime where flow is highly separated, and compared with other authors0 CFD simulations for pitching airfoil. The effects of varying the reduced frequency are also investigated. During the upstroke the present results are in generally good agreement with experiment and other CFD studies. During the downstroke some differences with experiment and other CFD models are apparent. This may be due to the sensitivity of the separated flow to modelling assumptions and experimental conditions. Overall, the degree of agreement between CFD and experiment is considered encouraging.


ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition | 2016

Aero-Thermo-Mechanical Modelling and Validation of Transient Effects in a High Pressure Turbine Internal Air System

Vlad Ganine; Dario Amirante; Nicholas J. Hills

Accurate prediction of metal temperatures, blade tip and seal clearances in high pressure compressor and turbine air systems leads to dramatic improvements in overall aero-engine efficiency and component life. Fast transients during an engine flight profile may introduce large changes in geometry between adjacent rotor and stator components. The changing dynamics in a few critical seals and interfaces can change the dynamics of the entire engine, compromising efficiency, integrity and long service life. In this paper we present results of a coupled aero-thermo-mechanical transient simulation of a high pressure turbine assembly throughout an engine flight cycle. The fluid and solid model geometry is approximated as 2D axisymmetric. The problem, formulated as a four field coupled multiphysics system of equations, is simplified using a quasi-steady state assumption: the transient thermal solid problem is coupled to a sequence of steady fluid problems and static structural problems. The predicted results compare well with the experimental measurements over the entire fluid-solid interface. We show improvement in transient predictions isolating the effects of the solid domain deformation. The remaining transient error is linked to temporal uncertainties in the fluid model inlet boundary conditions which were taken as a spatial average of the main annulus flow conditions.© 2016 ASME


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015

Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow

Zixiang Sun; Dario Amirante; John W. Chew; Nicholas J. Hills

Flow and heat transfer in an aero-engine compressor disc cavity with radial inflow has been studied using computational fluid dynamics (CFD), large eddy simulation (LES) and coupled fluid/solid modelling. Standalone CFD investigations were conducted using a set of popular turbulence models along with 0.2° axisymmetric and a 22.5° discrete sector CFD models. The overall agreement between the CFD predictions is good, and solutions are comparable to an established integral method solution in the major part of the cavity. The LES simulation demonstrates that flow unsteadiness in the cavity due to the unstable thermal stratification is largely suppressed by the radial inflow. Steady flow CFD modelling using the axisymmetric sector model and the Spalart-Allmaras turbulence model was coupled with a finite element (FE) thermal model of the rotating cavity. Good agreement was obtained between the coupled solution and rig test data in terms of metal temperature. Analysis confirms that use of a small radial bleed flow in compressor cavities is effective in reducing thermal response times for the compressor discs and that this could be applied in management of compressor blade clearance.Copyright


ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition | 2016

LES VALIDATION FOR A ROTATING CYLINDRICAL CAVITY WITH RADIAL INFLOW

Michel Onori; Dario Amirante; Nicholas J. Hills; John W. Chew

This paper describes Large-Eddy Simulations (LES) of the flow in a rotating cavity with narrow inter-disc spacing and a radial inflow introduced from the shroud. Simulations have been conducted using a compressible, unstructured, finite-volume solver, and testing different subgrid scale models. These include the standard Smagorinsky model with Van Driest damping function near the wall, the WALE model and the implicit LES procedure. Reynolds averaged Navier-Stokes (RANS) results, based on the Spalart-Allmaras and SST k − ω models, are also presented. LES solutions reveal a turbulent source region, a laminar oscillating core with almost zero axial and radial velocity and turbulent Ekman type boundary layers along the discs. Validations are carried out against the experimental data available from the study of Firouzian et al. [1]. It is shown that the tangential velocity and the pressure drop across the cavity are very well predicted by both RANS and LES, although significant differences are observed in the velocity profiles within the boundary layers.

Collaboration


Dive into the Dario Amirante's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Gao

University of Surrey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge