Dario Vianello
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dario Vianello.
Current Pharmaceutical Design | 2013
Stefano Salvioli; Daniela Monti; Catia Lanzarini; Maria Conte; Chiara Pirazzini; Maria Giulia Bacalini; Paolo Garagnani; Cristina Giuliani; Elisa Fontanesi; Rita Ostan; Laura Bucci; Federica Sevini; Stella Lukas Yani; Annalaura Barbieri; Laura Lomartire; Vincenzo Borelli; Dario Vianello; Elena Bellavista; Morena Martucci; Elisa Cevenini; Elisa Pini; Maria Scurti; Fiammetta Biondi; Aurelia Santoro; Miriam Capri; Claudio Franceschi
Inflamm-aging, that is the age-associated inflammatory status, is considered one of the most striking consequences of immunosenescence, as it is believed to be linked to the majority of age-associated diseases sharing an inflammatory basis. Nevertheless, evidence is emerging that inflamm-aging is at least in part independent from immunological stimuli. Moreover, centenarians who avoided or delayed major inflammatory diseases display markers of inflammation. In this paper we proposed a reappraisal of the concept of inflamm-aging, suggesting that its pathological effects can be independent from the total amount of pro-inflammatory mediators, but they would be rather associated with the anatomical district and type of cells where they are produced and where they primarily act.
Human Mutation | 2013
Dario Vianello; Federica Sevini; Gastone Castellani; Laura Lomartire; Miriam Capri; Claudio Franceschi
Deep sequencing technologies are completely revolutionizing the approach to DNA analysis. Mitochondrial DNA (mtDNA) studies entered in the “postgenomic era”: the burst in sequenced samples observed in nuclear genomics is expected also in mitochondria, a trend that can already be detected checking complete mtDNA sequences database submission rate. Tools for the analysis of these data are available, but they fail in throughput or in easiness of use. We present here a new pipeline based on previous algorithms, inherited from the “nuclear genomic toolbox,” combined with a newly developed algorithm capable of efficiently and easily classify new mtDNA sequences according to PhyloTree nomenclature. Detected mutations are also annotated using data collected from publicly available databases. Thanks to the analysis of all freely available sequences with known haplogroup obtained from GenBank, we were able to produce a PhyloTree‐based weighted tree, taking into account each haplogroup pattern conservation. The combination of a highly efficient aligner, coupled with our algorithm and massive usage of asynchronous parallel processing, allowed us to build a high‐throughput pipeline for the analysis of mtDNA sequences that can be quickly updated to follow the ever‐changing nomenclature. HaploFind is freely accessible at the following Web address: https://haplofind.unibo.it.
Aging Cell | 2014
Nicola Raule; Federica Sevini; Shengting Li; Annalaura Barbieri; Federica Tallaro; Laura Lomartire; Dario Vianello; Alberto Montesanto; Jukka S. Moilanen; Vladyslav Bezrukov; Hélène Blanché; Antti Hervonen; Kaare Christensen; Luca Deiana; Efstathios S. Gonos; Thomas B. L. Kirkwood; Peter Kristensen; Alberta Leon; Pier Giuseppe Pelicci; Michel Poulain; Irene Maeve Rea; José Remacle; Jean-Marie Robine; Stefan Schreiber; Ewa Sikora; Peternella Eline Slagboom; Liana Spazzafumo; Maria Antonietta Stazi; Olivier Toussaint; James W. Vaupel
To re‐examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high‐resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes.
Nutrients | 2015
Rita Ostan; Catia Lanzarini; Elisa Pini; Maria Scurti; Dario Vianello; Claudia Bertarelli; Cristina Fabbri; Massimo Izzi; Giustina Palmas; Fiammetta Biondi; Morena Martucci; Elena Bellavista; Stefano Salvioli; Miriam Capri; Claudio Franceschi; Aurelia Santoro
Aging is considered the major risk factor for cancer, one of the most important mortality causes in the western world. Inflammaging, a state of chronic, low-level systemic inflammation, is a pervasive feature of human aging. Chronic inflammation increases cancer risk and affects all cancer stages, triggering the initial genetic mutation or epigenetic mechanism, promoting cancer initiation, progression and metastatic diffusion. Thus, inflammaging is a strong candidate to connect age and cancer. A corollary of this hypothesis is that interventions aiming to decrease inflammaging should protect against cancer, as well as most/all age-related diseases. Epidemiological data are concordant in suggesting that the Mediterranean Diet (MD) decreases the risk of a variety of cancers but the underpinning mechanism(s) is (are) still unclear. Here we review data indicating that the MD (as a whole diet or single bioactive nutrients typical of the MD) modulates multiple interconnected processes involved in carcinogenesis and inflammatory response such as free radical production, NF-κB activation and expression of inflammatory mediators, and the eicosanoids pathway. Particular attention is devoted to the capability of MD to affect the balance between pro- and anti-inflammaging as well as to emerging topics such as maintenance of gut microbiota (GM) homeostasis and epigenetic modulation of oncogenesis through specific microRNAs.
Mechanisms of Ageing and Development | 2014
Dulce Calçada; Dario Vianello; Enrico Giampieri; Claudia Sala; Gastone Castellani; Albert A. de Graaf; Bas Kremer; Ben van Ommen; Edith J. M. Feskens; Aurelia Santoro; Claudio Franceschi; Jildau Bouwman
Aging is a biological process characterized by the progressive functional decline of many interrelated physiological systems. In particular, aging is associated with the development of a systemic state of low-grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function. Systems biology has helped in identifying the mediators and pathways involved in these phenomena, mainly through the application of high-throughput screening methods, valued for their molecular comprehensiveness. Nevertheless, inflammation and metabolic regulation are dynamical processes whose behavior must be understood at multiple levels of biological organization (molecular, cellular, organ, and system levels) and on multiple time scales. Mathematical modeling of such behavior, with incorporation of mechanistic knowledge on interactions between inflammatory and metabolic mediators, may help in devising nutritional interventions capable of preventing, or ameliorating, the age-associated functional decline of the corresponding systems.
PLOS ONE | 2013
Federica Sevini; Daniele Yang Yao; Laura Lomartire; Annalaura Barbieri; Dario Vianello; Gianmarco Ferri; Edgardo Moretti; María Cristina Dasso; Paolo Garagnani; Davide Pettener; Claudio Franceschi; Donata Luiselli; Zelda Alice Franceschi
Sub-population structure and intricate kinship dynamics might introduce biases in molecular anthropology studies and could invalidate the efforts to understand diseases in highly admixed populations. In order to clarify the previously observed distribution pattern and morbidity of Chagas disease in Gran Chaco, Argentina, we studied two populations (Wichí and Criollos) recruited following an innovative bio-cultural model considering their complex cultural interactions. By reconstructing the genetic background and the structure of these two culturally different populations, the pattern of admixture, the correspondence between genealogical and genetic relationships, this integrated perspective had the power to validate data and to link the gap usually relying on a singular discipline. Although Wichí and Criollos share the same area, these sympatric populations are differentiated from the genetic point of view as revealed by Non Recombinant Y Chromosome genotyping resulting in significantly high Fst values and in a lower genetic variability in the Wichí population. Surprisingly, the Amerindian and the European components emerged with comparable amounts (20%) among Criollos and Wichí respectively. The detailed analysis of mitochondrial DNA showed that the two populations have as much as 87% of private haplotypes. Moreover, from the maternal perspective, despite a common Amerindian origin, an Andean and an Amazonian component emerged in Criollos and in Wichí respectively. Our approach allowed us to highlight that quite frequently there is a discrepancy between self-reported and genetic kinship. Indeed, if self-reported identity and kinship are usually utilized in population genetics as a reliable proxy for genetic identity and parental relationship, in our model populations appear to be the result not only and not simply of the genetic background but also of complex cultural determinants. This integrated approach paves the way to a rigorous reconstruction of demographic and cultural history as well as of bioancestry and propensity to diseases of Wichí and Criollos.
Experimental Gerontology | 2014
Federica Sevini; Cristina Giuliani; Dario Vianello; Enrico Giampieri; Aurelia Santoro; Fiammetta Biondi; Paolo Garagnani; Giuseppe Passarino; Donata Luiselli; Miriam Capri; Claudio Franceschi; Stefano Salvioli
The last 30 years of research greatly contributed to shed light on the role of mitochondrial DNA (mtDNA) variability in aging, although contrasting results have been reported, mainly due to bias regarding the population size and stratification, and to the use of analysis methods (haplogroup classification) that resulted to be not sufficiently adequate to grasp the complexity of the phenomenon. A 5-years European study (the GEHA EU project) collected and analyzed data on mtDNA variability on an unprecedented number of long-living subjects (enriched for longevity genes) and a comparable number of controls (matched for gender and ethnicity) in Europe. This very large study allowed a reappraisal of the role of both the inherited and the somatic mtDNA variability in aging, as an association with longevity emerged only when mtDNA variants in OXPHOS complexes co-occurred. Moreover, the availability of data from both nuclear and mitochondrial genomes on a large number of subjects paves the way for an evaluation at a very large scale of the epistatic interactions at a higher level of complexity. This scenario is expected to be even more clarified in the next future with the use of next generation sequencing (NGS) techniques, which are becoming applicable to evaluate mtDNA variability and, then, new mathematical/bioinformatic analysis methods are urgently needed. Recent advances of association studies on age-related diseases and mtDNA variability will also be discussed in this review, taking into account the bias hidden by population stratification. Finally, very recent findings in terms of mtDNA heteroplasmy (i.e. the coexistence of wild type and mutated copies of mtDNA) and aging as well as mitochondrial epigenetic mechanisms will also be discussed.
PLOS ONE | 2015
Sara De Fanti; Chiara Barbieri; Stefania Sarno; Federica Sevini; Dario Vianello; Erika Tamm; Ene Metspalu; Mannis van Oven; Alexander Hübner; Marco Sazzini; Claudio Franceschi; Davide Pettener; Donata Luiselli
Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent.
Mitochondrial DNA | 2017
Sara De Fanti; Dario Vianello; Cristina Giuliani; Andrea Quagliariello; Anna Cherubini; Federica Sevini; Nicoletta Iaquilano; Claudio Franceschi; Marco Sazzini; Donata Luiselli
Abstract Investigation of human mitochondrial DNA variation patterns and phylogeny has been extensively used in Anthropological and Population Genetics studies and sequencing the whole mitochondrial genome is progressively becoming the gold standard. Among the currently available massive parallel sequencing technologies, Ion Torrent™ semiconductor sequencing represents a promising approach for such studies. Nevertheless, an experimental protocol conceived to enable the achievement of both as high as possible yield and of the most homogeneous sequence coverage through the whole mitochondrial genome is still not available. The present work was thus aimed at improving the overall performance of whole mitochondrial genomes Ion Torrent™ sequencing, with special focus on the capability to obtain robust coverage and highly reliable variants calling. For this purpose, a series of cost-effective modifications in standard laboratory workflows was fine-tuned to optimize them for medium- and large-scale population studies. A total of 54 human samples were thus subjected to sequencing of the whole mitochondrial genome with the Ion Personal Genome Machine™ System in four distinct experiments and using Ion 314 chips. Seven of the selected samples were also characterized by means of conventional Sanger sequencing for the sake of comparison. Obtained results demonstrated that the implemented optimizations had definitely improved sequencing outputs in terms of both variants calling efficiency and coverage uniformity, enabling to setup an effective and accurate protocol for whole mitochondrial genome sequencing and a considerable reduction in experimental time consumption and sequencing costs.
PLOS ONE | 2014
Federica Sevini; Daniele Yang Yao; Laura Lomartire; Annalaura Barbieri; Dario Vianello; Gianmarco Ferri; Edgardo Moretti; María Cristina Dasso; Paolo Garagnani; Davide Pettener; Claudio Franceschi; Donata Luiselli; Zelda Alice Franceschi