Darius Ebrahimi-Fakhari
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darius Ebrahimi-Fakhari.
The Journal of Neuroscience | 2011
Darius Ebrahimi-Fakhari; Ippolita Cantuti-Castelvetri; Zhanyun Fan; Edward Rockenstein; Eliezer Masliah; Bradley T. Hyman; Pamela J. McLean; Vivek K. Unni
Increased intracellular levels of α-synuclein are implicated in Parkinsons disease and related disorders and may be caused by alterations in the ubiquitin–proteasome system (UPS) or the autophagy–lysosomal pathway (ALP). A critical question remains how α-synuclein is degraded by neurons in vivo. To address this, our study uses α-synuclein transgenic mice, expressing human α-synuclein or α-synuclein-eGFP under the (h)PDGF-β promoter, in combination with in vivo pharmacologic and multiphoton imaging strategies to systematically test degradation pathways in the living mouse brain. We demonstrate that the UPS is the main degradation pathway for α-synuclein under normal conditions in vivo while with increased α-synuclein burden the ALP is recruited. Moreover, we report alterations of the UPS in α-synuclein transgenic mice and age dependence to the role of the UPS in α-synuclein degradation. In addition, we provide evidence that the UPS and ALP might be functionally connected such that impairment of one can upregulate the other. These results provide a novel link between the UPS, the ALP, and α-synuclein pathology and may have important implications for future therapeutics targeting degradation pathways.
Acta Neuropathologica | 2012
Darius Ebrahimi-Fakhari; Lara Wahlster; Pamela J. McLean
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson’s disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin–proteasome system (UPS) and the autophagy–lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson’s disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson’s disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson’s disease.
Cell | 2015
Jonathan Lipton; Elizabeth D. Yuan; Lara M. Boyle; Darius Ebrahimi-Fakhari; Erica Kwiatkowski; Ashwin Nathan; Fred C. Davis; John M. Asara; Mustafa Sahin
The circadian timing system synchronizes cellular function by coordinating rhythmic transcription via a transcription-translational feedback loop. How the circadian system regulates gene expression at the translational level remains a mystery. Here, we show that the key circadian transcription factor BMAL1 associates with the translational machinery in the cytosol and promotes protein synthesis. The mTOR-effector kinase, ribosomal S6 protein kinase 1 (S6K1), an important regulator of translation, rhythmically phosphorylates BMAL1 at an evolutionarily conserved site. S6K1-mediated phosphorylation is critical for BMAL1 to both associate with the translational machinery and stimulate protein synthesis. Protein synthesis rates demonstrate circadian oscillations dependent on BMAL1. Thus, in addition to its critical role in circadian transcription, BMAL1 is a translation factor that links circadian timing and the mTOR signaling pathway. More broadly, these results expand the role of the circadian clock to the regulation of protein synthesis.
Autophagy | 2012
Jochen Klucken; Anne Maria Poehler; Darius Ebrahimi-Fakhari; Jacqueline Schneider; Silke Nuber; Edward Rockenstein; Ursula Schlötzer-Schrehardt; Bradley T. Hyman; Pamela J. McLean; Eliezer Masliah; Juergen Winkler
Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity.
Movement Disorders | 2016
Connie Marras; Anthony E. Lang; Bart P. van de Warrenburg; Carolyn M. Sue; Sarah J. Tabrizi; Lars Bertram; Saadet Mercimek-Mahmutoglu; Darius Ebrahimi-Fakhari; Thomas T. Warner; Alexandra Durr; Birgit Assmann; Katja Lohmann; Vladimir Kostic; Christine Klein
The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion‐based list of confirmed genetically determined movement disorders at the time it was last updated.
Brain | 2015
Darius Ebrahimi-Fakhari; Afshin Saffari; Ana Westenberger; Christine Klein
Next-generation sequencing has identified mutations in the PRRT2 (proline-rich transmembrane protein 2) gene as the leading cause for a wide and yet evolving spectrum of paroxysmal diseases. PRRT2 mutations are found in the majority of patients with benign familial infantile epilepsy, infantile convulsions and choreoathetosis and paroxysmal kinesigenic dyskinesia, confirming a common disease spectrum that had previously been suggested based on gene linkage analyses and shared clinical features. Beyond these clinical entities, PRRT2 mutations have been described in other childhood-onset movement disorders, different forms of seizures, headache disorders, and intellectual disability. PRRT2 encodes a protein that is expressed in the central nervous system and is thought to be involved in the modulation of synaptic neurotransmitter release. The vast majority of mutations lead to a truncated protein or no protein at all and thus to a haploinsufficient state. The subsequent reduction of PRRT2 protein may lead to altered synaptic neurotransmitter release and dysregulated neuronal excitability in various regions of the brain, resulting in paroxysmal movement disorders and seizure phenotypes. In this review, we examine the genetics and neurobiology of PRRT2 and summarize the evolving clinical and molecular spectrum of PRRT2-associated diseases. Through a comprehensive review of 1444 published cases, we provide a detailed assessment of the demographics, disease characteristics and genetic findings of patients with PRRT2 mutations. Benign familial infantile epilepsy (41.7%; n = 602), paroxysmal kinesigenic dyskinesia (38.7%; n = 560) and infantile convulsions and choreoathetosis (14.3%; n = 206) constitute the vast majority of PRRT2-associated diseases, leaving 76 patients (5.3%) with a different primary diagnosis. A positive family history is present in 89.1% of patients; and PRRT2 mutations are familial in 87.1% of reported cases. Seventy-three different disease-associated PRRT2 mutations (35 truncating, 22 missense, three extension mutations, six putative splice site changes, and seven changes that lead to a complete PRRT2 deletion) have been described to date, with the c.649dupC frameshift mutation accounting for the majority of cases (78.5%). Expanding the genetic landscape, 15 patients with biallelic PRRT2 mutations and six patients with 16p11.2 microdeletions and a paroxysmal kinesigenic dyskinesia phenotype have been reported. Probing the phenotypic boundaries of PRRT2-associated disorders, several movement, seizure and headache disorders have been linked to PRRT2 mutations in a subset of patients. Of these, hemiplegic migraine emerges as a novel PRRT2-associated phenotype. With this comprehensive review of PRRT2-associated diseases, we hope to provide a scientific resource for informing future research, both in laboratory models and in clinical studies.
Acta neuropathologica communications | 2013
Darius Ebrahimi-Fakhari; Laiq-Jan Saidi; Lara Wahlster
Changes in protein metabolism are key to disease onset and progression in many neurodegenerative diseases. As a prime example, in Parkinson’s disease, folding, post-translational modification and recycling of the synaptic protein α-synuclein are clearly altered, leading to a progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. Altered protein folding is one of the first steps of an increasingly understood cascade in which α-synuclein forms complex oligomers and finally distinct protein aggregates, termed Lewy bodies and Lewy neurites. In neurons, an elaborated network of chaperone and co-chaperone proteins is instrumental in mediating protein folding and re-folding. In addition to their direct influence on client proteins, chaperones interact with protein degradation pathways such as the ubiquitin-proteasome-system or autophagy in order to ensure the effective removal of irreversibly misfolded and potentially pathogenic proteins. Because of the vital role of proper protein folding for protein homeostasis, a growing number of studies have evaluated the contribution of chaperone proteins to neurodegeneration. We herein review our current understanding of the involvement of chaperones, co-chaperones and chaperone-mediated autophagy in synucleinopathies with a focus on the Hsp90 and Hsp70 chaperone system. We discuss genetic and pathological studies in Parkinson’s disease as well as experimental studies in models of synucleinopathies that explore molecular chaperones and protein degradation pathways as a novel therapeutic target. To this end, we examine the capacity of chaperones to prevent or modulate neurodegeneration and summarize the current progress in models of Parkinson’s disease and related neurodegenerative disorders.
Pediatric Clinics of North America | 2015
Francis J. DiMario; Mustafa Sahin; Darius Ebrahimi-Fakhari
Tuberous sclerosis complex is an autosomal-dominant, neurocutaneous, multisystem disorder characterized by cellular hyperplasia and tissue dysplasia. The genetic cause is mutations in the TSC1 gene, found on chromosome 9q34, and TSC2 gene, found on chromosome 16p13. The clinical phenotypes resulting from mutations in either of the 2 genes are variable in each individual. Herein, advances in the understanding of molecular mechanisms in tuberous sclerosis complex are reviewed, and current guidelines for diagnosis, treatment, follow-up, and management are summarized.
Autophagy | 2012
Darius Ebrahimi-Fakhari; Pamela J. McLean; Vivek K. Unni
Progressive accumulation of α-synuclein is key to the pathology of many neurodegenerative diseases, including Parkinson disease and dementia with Lewy bodies. Increased intracellular levels of α-synuclein may be caused by enhanced expression or alterations in protein degradation pathways. Here we review our recent study showing that the ubiquitin-proteasome system and the autophagy-lysosomal pathway are differentially involved in α-synucleins degradation in vivo. We discuss the key findings obtained with our novel in vivo approach and also present a model for the progression of protein aggregation and dysfunctional degradation in Parkinson disease.
Journal of Parkinson's disease | 2011
Darius Ebrahimi-Fakhari; Lara Wahlster; Pamela J. McLean
Parkinsons disease, like many other neurodegenerative disorders, is characterized by the progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. The cascade by which the small synaptic protein α-synuclein misfolds to form distinctive protein aggregates, termed Lewy bodies and Lewy neurites, has been the subject of intensive research for more than a decade. Genetic and pathological studies in Parkinsons disease patients as well as experimental studies in disease models have clearly established altered protein metabolism as a key element in the pathogenesis of Parkinsons disease. Alterations in protein metabolism include misfolding and aggregation, post-translational modification and dysfunctional degradation of cytotoxic protein species. Protein folding and re-folding are both mediated by a highly conserved network of molecules, called molecular chaperones and co-chaperones. In addition to the regulatory role in protein folding, molecular chaperone function is intimately associated with pathways of protein degradation, such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway, to effectively remove irreversibly misfolded proteins. Because of the central role of molecular chaperones in maintaining protein homeostasis, we herein review our current knowledge on the involvement of molecular chaperones and co-chaperones in Parkinsons disease. We further discuss the capacity of molecular chaperones to prevent or modulate neurodegeneration, an important concept for future neuroprotective strategies and summarize the current progress in preclinical studies in models of Parkinsons disease and other neurodegenerative disorders. Finally we include a discussion on the future potential of using molecular chaperones as a disease modifying therapy.