Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darius Kubulus is active.

Publication


Featured researches published by Darius Kubulus.


Lancet Neurology | 2012

Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: a randomised controlled trial.

Silke Walter; Panagiotis Kostopoulos; Anton Haass; Isabel Keller; Martin Lesmeister; Thomas Schlechtriemen; Christian L. Roth; P. Papanagiotou; Iris Q. Grunwald; Helmut Schumacher; Stephan Helwig; Julio Viera; Heiko Körner; Maria Alexandrou; Umut Yilmaz; Karin Ziegler; Kathrin Schmidt; Rainer Dabew; Darius Kubulus; Yang Liu; Thomas Volk; Kai Kronfeld; Christian Ruckes; Thomas Bertsch; W. Reith; Klaus Fassbender

BACKGROUND Only 2-5% of patients who have a stroke receive thrombolytic treatment, mainly because of delay in reaching the hospital. We aimed to assess the efficacy of a new approach of diagnosis and treatment starting at the emergency site, rather than after hospital arrival, in reducing delay in stroke therapy. METHODS We did a randomised single-centre controlled trial to compare the time from alarm (emergency call) to therapy decision between mobile stroke unit (MSU) and hospital intervention. For inclusion in our study patients needed to be aged 18-80 years and have one or more stroke symptoms that started within the previous 2·5 h. In accordance with our week-wise randomisation plan, patients received either prehospital stroke treatment in a specialised ambulance (equipped with a CT scanner, point-of-care laboratory, and telemedicine connection) or optimised conventional hospital-based stroke treatment (control group) with a 7 day follow-up. Allocation was not masked from patients and investigators. Our primary endpoint was time from alarm to therapy decision, which was analysed with the Mann-Whitney U test. Our secondary endpoints included times from alarm to end of CT and to end of laboratory analysis, number of patients receiving intravenous thrombolysis, time from alarm to intravenous thrombolysis, and neurological outcome. We also assessed safety endpoints. This study is registered with ClinicalTrials.gov, number NCT00153036. FINDINGS We stopped the trial after our planned interim analysis at 100 of 200 planned patients (53 in the prehospital stroke treatment group, 47 in the control group), because we had met our prespecified criteria for study termination. Prehospital stroke treatment reduced the median time from alarm to therapy decision substantially: 35 min (IQR 31-39) versus 76 min (63-94), p<0·0001; median difference 41 min (95% CI 36-48 min). We also detected similar gains regarding times from alarm to end of CT, and alarm to end of laboratory analysis, and to intravenous thrombolysis for eligible ischaemic stroke patients, although there was no substantial difference in number of patients who received intravenous thrombolysis or in neurological outcome. Safety endpoints seemed similar across the groups. INTERPRETATION For patients with suspected stroke, treatment by the MSU substantially reduced median time from alarm to therapy decision. The MSU strategy offers a potential solution to the medical problem of the arrival of most stroke patients at the hospital too late for treatment. FUNDING Ministry of Health of the Saarland, Germany, the Werner-Jackstädt Foundation, the Else-Kröner-Fresenius Foundation, and the Rettungsstiftung Saar.


Critical Care Medicine | 2008

Selective activation of melatonin receptors with ramelteon improves liver function and hepatic perfusion after hemorrhagic shock in rat

Alexander M. Mathes; Darius Kubulus; Lina Waibel; Julia Weiler; Paul Heymann; Beate Wolf; Hauke Rensing

Objective:Melatonin may attenuate organ damage via direct antioxidative properties, and was recently demonstrated to reduce cardiac and hepatic injury through receptor-dependent effects. However, the relevance of an isolated activation of melatonin receptors for organ protection, excluding direct antioxidant effects, has not been established yet. This study was designed to investigate whether therapy with melatonin receptor agonist and hypnotic substance ramelteon may improve liver function, hepatic perfusion, and hepatic integrity after hemorrhagic shock in rat. Design:Prospective, randomized, controlled study. Setting:University research laboratory. Subjects:Male Sprague–Dawley rats (n = 10 per group). Interventions:Animals underwent hemorrhagic shock (mean arterial pressure 35 ± 5 mm Hg for 90 mins) and were resuscitated with shed blood and Ringers lactate (2 hrs). At the end of shock, animals were treated with ramelteon (1.0 mg/kg intravenously), melatonin receptor antagonist luzindole plus ramelteon (each 1.0 mg/kg intravenously), or vehicle. Measurements and Main Results:In vitro, ramelteon displayed no relevant antioxidant capacity in an 2,2′-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) assay, compared with melatonin. In vivo, liver function was assessed by plasma disappearance rate of indocyanine green, and intravital microscopy was performed for evaluation of hepatic perfusion index, nicotinamide adenine dinucleotide phosphate autofluorescence, and hepatic integrity. Compared with vehicle controls, ramelteon therapy significantly improved plasma disappearance rate of indocyanine green (7.89 ± 2.12% vs. 13.67 ± 2.51%; p = 0.006), hepatic perfusion index (352.04 ± 111.78 pl/sec/mm vs. 848.81 ± 181.38 pl/sec/mm; p = 0.002), nicotinamide adenine dinucleotide phosphate autofluorescence and hepatocellular injury. Coadministration of luzindole abolished the protective effect of ramelteon with respect to liver function and nicotinamide adenine dinucleotide phosphate autofluorescence. Conclusions:Ramelteon therapy improves liver function, hepatic perfusion, and hepatocellular integrity after hemorrhagic shock in rat. This demonstrates that an isolated activation of melatonin receptors may be sufficient for organ protection, independent from direct antioxidant effects. The hypnotic ramelteon could thus play an interesting role in future sedation concepts for critical care patients.


Shock | 2007

Melatonin pretreatment improves liver function and hepatic perfusion after hemorrhagic shock.

Alexander M. Mathes; Darius Kubulus; Sascha Pradarutti; Alexander Bentley; Julia Weiler; Beate Wolf; Stephan Ziegeler; Inge Bauer; Hauke Rensing

Exogenous administration of pineal hormone melatonin (MEL) has been demonstrated to attenuate organ damage in models of I/R and inflammation by antioxidative effects. However, specific organ-protective effects of MEL with respect to hemorrhagic shock have not been investigated yet. In the present study, we evaluated the role of MEL pretreatment for hepatic perfusion, redox state, and function after hemorrhage and resuscitation, with emphasis on MEL receptor activation. In a model of hemorrhagic shock (MAP 35 ± 5 mmHg for 90 min) and reperfusion (2 h), we measured nicotinamide adenine dinucleotide phosphate (reduced form; NADPH) autofluorescence, hepatic microcirculation, and hepatocellular injury by intravital microscopy, as well as plasma disappearance rate of indocyanine green (PDRICG) as a sensitive maker of liver function in rat. Pretreatment with 10 mg kg−1 MEL (i.v.) 15 min before induction of hemorrhage resulted in a significantly improved PDRICG compared with controls (MEL/shock, 15.02% min−1 ± 2.9 SD vs. vehicle/shock, 6.18 ± 4.6 SD; P = 0.001). Intravital microscopy after reperfusion revealed an improved hepatic perfusion index, redox state, and reduced hepatocellular injury in pretreated animals compared with the vehicle group. Melatonin receptor antagonist luzindole (LZN; 2.5 mg kg−1) almost completely abolished the protective effects of MEL pretreatment with respect to liver function (MEL + LZN/shock PDRICG, 7.31% min−1 ± 3.4 SD). Beneficial effects regarding hepatic perfusion, redox state, and cellular injury were not influenced by LZN, indicating that they may depend on antioxidative effects of MEL. However, liver function after hemorrhage is effectively maintained by MEL pretreatment via receptor-dependent pathways.


Shock | 2007

Hemin arginate-induced heme oxygenase 1 expression improves liver microcirculation and mediates an anti-inflammatory cytokine response after hemorrhagic shock.

Darius Kubulus; Alexander M. Mathes; Sascha Pradarutti; Alexander Raddatz; Jochen Heiser; Daphne Pavlidis; Beate Wolf; Inge Bauer; Hauke Rensing

Microvascular failure is a major determinant for the development of hepatocellular dysfunction after hemorrhagic shock. Induction of heme oxygenase (HO) 1 may confer hepatocellular protection. Hemin arginate (HAR) induces HO-1 and protects against shock-induced organ failure. The mechanisms are not completely understood, but HO-1-mediated protective effects on the microcirculation and on the inflammatory response may contribute. Therefore, the aim of the present study was to investigate the influence of HAR pretreatment on liver microcirculation and cytokine response to assess the role of HO-1-mediated effects under these conditions. Male Sprague-Dawley rats (200-300 g; n = 8 per group) were subjected to hemorrhage (MAP, 30-40 mmHg for 1 h) 24 h after pretreatment with vehicle (Ringer solution) or HAR (5 mg kg−1), followed by 2 h of resuscitation. The microcirculation and the redox state (nicotinamide adenine dinucleotide phosphate [reduced form; NADPH] autofluorescence) of the liver were assessed using intravital microscopy. Cytokine levels (TNF-&agr; and IL-10) were quantified using an enzyme-linked immunosorbent assay. A profound induction of HO-1 was observed 24 h after pretreatment with HAR. Hemorrhage significantly reduced sinusoidal perfusion and increased NADPH autofluorescence and cytokine levels. Hemin arginate pretreatment significantly improved liver microcirculation, reduced NADPH autofluorescence, significantly increased IL-10, and tended to decrease TNF-&agr; serum levels compared with shock vehicle. Blockade of the HO pathway with tin-mesoporphyrin-IX after HAR pretreatment abolished the observed beneficial effects, whereas the additional administration of the carbon monoxide donor dichloromethane reversed the tin-mesoporphyrin-IX-mediated changes. These results suggest that HAR pretreatment improves liver microcirculation and mediates an anti-inflammatory cytokine response after hemorrhagic shock through induction of HO-1 and in part through an increased carbon monoxide release.


Critical Care Medicine | 2005

Influence of heme-based solutions on stress protein expression and organ failure after hemorrhagic shock*

Darius Kubulus; Hauke Rensing; Markus Paxian; Jan-Tobias Thierbach; Tanja Meisel; Heinz Redl; Michael Bauer; Inge Bauer

Objective:Hemoglobin-based oxygen carriers (e.g., diaspirin-cross-linked hemoglobin [DCLHb] and hemoglobin glutamer-200 [HbG]) may have potential in the treatment of hemorrhagic shock. The nitric oxide scavenging and direct vasoconstrictive side effects of free hemoglobin of currently available preparations may increase organ injury after shock in contrast to non-oxygen-carrying heme solutions (e.g., hemin arginate [HAR]). However, both classes of substances might induce the protective enzyme heme oxygenase (HO)-1, particularly in the liver. The aim of the study was to assess the role of pretreatment with DCLHb, HbG, or HAR on HO-1 expression and organ injury after hemorrhagic shock. Design:Prospective controlled laboratory study. Setting:Animal research laboratory at a university hospital. Subjects:Male Sprague-Dawley rats (200–300 g body weight, n = 5–12/group). Interventions:Twenty-four hours after different doses of DCLHb, HbG (each 1, 2, or 3 g/kg of body weight), or HAR (5, 25, or 75 mg/kg of body weight), the protein expression of HO-1 and heat shock protein-70 in liver, kidney, heart, lungs, and aorta was determined. Twenty-four hours after pretreatment with DCLHb, HbG, or HAR, rats were subjected to hemorrhage (mean arterial blood pressure, 35–40 mm Hg for 1 or 2 hrs)/resuscitation (5 or 4 hrs, respectively). Animals treated with Ringer’s solution (30 mL/kg of body weight) served as controls. In additional experiments, HO activity was blocked with tin mesoporphyrin-IX. Measurements and Main Results:DCLHb, HbG, and HAR dose-dependently induced HO-1 protein but not heat shock protein-70. Pretreatment with DCLHb or HbG shortened the onset of decompensation in shock (DCLHb, 40 ± 11 mins; HbG, 36 ± 4 mins) compared with vehicle (68 ± 4 mins, p < .05) and HAR pretreatment (81 ± 7 mins, p < .05). High doses of DCLHb pretreatment increased mortality (2 hrs of shock, 80%; p < .05 vs. vehicle or HAR). Pretreatment with HAR led to higher shed blood volumes (p < .05) and higher hepatocellular ATP levels (2 hrs of shock, p < .05 vs. DCLHb and HbG). Blockade of HO activity by tin mesoporphyrin-IX abolished the protection mediated by HAR. Conclusions:Although DCLHb, HbG, and HAR induce HO-1 in the absence of an unspecific stress response, only HAR pretreatment protects against shock-induced organ failure. Although the underlying mechanisms of positive HAR priming are not completely understood, the induction of HO-1 expression and the lack of nitric oxide scavenging through HAR may play an important role.


Critical Care Medicine | 2008

Melatonin receptors mediate improvements of liver function but not of hepatic perfusion and integrity after hemorrhagic shock in rats.

Alexander M. Mathes; Darius Kubulus; Julia Weiler; Alexander Bentley; Lina Waibel; Beate Wolf; Inge Bauer; Hauke Rensing

Objective:Melatonin has been demonstrated to attenuate organ damage in models of ischemia and reperfusion. Melatonin treatment before hemorrhagic shock has been shown to improve liver function and hepatic perfusion. Proposed mechanisms of the pineal hormone involve direct inactivation of reactive oxygen species and induction of antioxidative enzymes. However, recent evidence suggests a strong influence of melatonin receptor activation for these effects. Specific protection of organ function by melatonin after hemorrhage has not been investigated yet. In this study, we evaluated whether melatonin therapy after hemorrhagic shock improves liver function and hepatic perfusion, with emphasis on melatonin receptor activation. Design:Prospective, randomized, controlled study. Setting:University research laboratory. Subjects:Male Sprague-Dawley rats, 200–300 g (n = 10 per group). Interventions:Animals underwent hemorrhagic shock (mean arterial pressure, 35 ± 5 mm Hg for 90 mins) and were resuscitated with shed blood and Ringers solution. At the end of shock, animals were treated with either melatonin (10 mg/kg, intravenously), melatonin receptor antagonist luzindole (2.5 mg/kg, intravenously) plus melatonin (10 mg/kg, intravenously), luzindole alone (2.5 mg/kg, intravenously), or vehicle. Measurements and Main Results:After 2 hrs of reperfusion, either liver function was assessed by plasma disappearance rate of indocyanine green or intravital microscopy of the liver was performed for evaluation of hepatic perfusion, hepatocellular redox state, and hepatic integrity. Compared with vehicle controls, melatonin therapy after hemorrhagic shock significantly improved plasma disappearance rate of indocyanine green, hepatic redox state, hepatocellular injury, and hepatic perfusion index. Coadministration of luzindole completely abolished the protective effect with respect to liver function only, and improvements regarding hepatic redox state, perfusion, and integrity were comparable with melatonin treatment alone. Conclusions:Melatonin therapy after hemorrhagic shock improves liver function, hepatic perfusion, redox state, and hepatic integrity. With respect to liver function, beneficial effects of the pineal hormone seem to be dependent on melatonin receptor activation.


European Journal of Pharmacology | 2014

Inhibition of glycogen synthase kinase (GSK)-3-β improves liver microcirculation and hepatocellular function after hemorrhagic shock.

Lena Jellestad; Tobias Fink; Sascha Pradarutti; Darius Kubulus; Beate Wolf; Inge Bauer; Chris Thiemermann; Hauke Rensing

Ischemia and reperfusion may cause liver injury and are characterized by hepatic microperfusion failure and a decreased hepatocellular function. Inhibition of glycogen synthase kinase (GSK)-3β, a serine-threonine kinase that has recently emerged as a key regulator in the modulation of the inflammatory response after stress events, may be protective in conditions like sepsis, inflammation and shock. Therefore, aim of the study was to assess the role of GSK-3β in liver microcirculation and hepatocellular function after hemorrhagic shock and resuscitation (H/R). Anesthetized male Sprague-Dawley rats underwent pretreatment with Ringer´s solution, vehicle (DMSO) or TDZD-8 (1 mg/kg), a selective GSK-3β inhibitor, 30 min before induction of hemorrhagic shock (mean arterial pressure 35±5 mmHg for 90 min) and were resuscitated with shed blood and Ringer´s solution (2h). 5h after resuscitation hepatic microcirculation was assessed by intravital microscopy. Propidium iodide (PI) positive cells, liver enzymes and alpha-GST were measured as indicators of hepatic injury. Liver function was estimated by assessment of indocyanine green plasma disappearance rate. H/R led to a significant decrease in sinusoidal diameters and impairment of liver function compared to sham operation. Furthermore, the number of PI positive cells in the liver as well as serum activities of liver enzymes and alpha-GST increased significantly after H/R. Pretreatment with TDZD-8 prevented the changes in liver microcirculation, hepatocellular injury and liver function after H/R. A significant rise in the plasma level of IL-10 was observed. Thus, inhibition of GSK-3β before hemorrhagic shock modulates the inflammatory response and improves hepatic microcirculation and hepatocellular function.


Experimental and Molecular Pathology | 2014

Melatonin modifies cellular stress in the liver of septic mice by reducing reactive oxygen species and increasing the unfolded protein response

Astrid Kleber; Darius Kubulus; Daniel Rössler; Beate Wolf; Thomas Volk; Thimoteus Speer; Tobias Fink

BACKGROUND & AIMS Melatonins hepatoprotective actions have numerously been demonstrated in the past but the underlying molecular mechanisms are widely unknown. For a better understanding of melatonins effects on hepatic stress response this study aimed to elucidate alterations in oxidative stress, unfolded protein response and acute phase response in septic mice. METHODS Male C3H/HeN mice underwent sham operation or cecal ligation and incision and remained anesthetized for 5h. Production of reactive oxygen species was determined by electron spin resonance spectroscopy. Protein and mRNA expression levels were determined by western blot analysis and quantitative real-time PCR, respectively. RESULTS Production of reactive oxygen species was strongly increased in the aorta and liver after 5h of polymicrobial sepsis which was entirely inhibited by treatment with melatonin. SOD-1 levels did not differ between the groups. Sepsis also induced the upregulation of VCAM-1 and ICAM-1 independent of melatonin treatment but probably regulated via ERK1/2 signaling. Melatonin triggered the transcriptional upregulation of PERK in septic animals which seems to be independent on ERK1/2 signaling and NR4A1 activation. Melatonin therapy also engendered an increased expression of CHOP, but apoptosis was not initiated. Furthermore, sepsis reduced the expression of the transcription factor CREBH which was entirely suppressed by melatonin. CONCLUSIONS This study gives new insight into the mechanisms by which melatonin might confer its hepatoprotective actions during polymicrobial sepsis. The results clearly show the melatonin-mediated amelioration of oxidative stress as well as alterations in the cellular stress mechanisms via the unfolded protein response and the acute phase response.


Shock | 2009

Endothelin-1 contributes to hemoglobin glutamer-200-mediated hepatocellular dysfunction after hemorrhagic shock.

Darius Kubulus; Alexander M. Mathes; Erik Reus; Sascha Pradarutti; Daphne Pavlidis; Jan-Tobias Thierbach; Jochen Heiser; Beate Wolf; Inge Bauer; Hauke Rensing

Hemoglobin glutamer-200 (HbG) might be an alternative to human blood. However, artificial oxygen carriers are initially successful to restore oxygen supply but may induce organ dysfunction and increase mortality several days after application in terms of delayed side effects. Impairment of microcirculation and an inflammatory cytokine response through induction of endothelin (ET) 1 may contribute. We investigated the role of HbG for the therapy of hemorrhagic shock and for delayed side effects in a model of hemorrhagic shock and reperfusion (H/R). To analyze early effects, Sprague-Dawley rats (n = 8/group) were resuscitated after hemorrhagic shock (1 h) with shed blood or HbG followed by reperfusion (2 h). Hemorrhagic shock and reperfusion decreased liver microcirculation and hepatic function in both shock groups to the same extent. Thus, HbG was not superior to shed blood regarding resuscitation end points after hemorrhagic shock. To determine delayed effects, rats (n = 8/group) were pretreated with Ringers solution (vehicle) or HbG (1 g/kg) 24 h before H/R. Endothelin receptors were blocked with bosentan. Subsequently, ET-1 expression, inflammatory response, sinusoidal perfusion, hepatocellular function (plasma disappearance rate of indocyanine green [PDRICG]), and redox state [NAD(P)H] were analyzed. After vehicle pretreatment, H/R increased ET-1, hepatocellular injury, NAD(P)H, and cytokine levels. Sinusoidal perfusion and PDRICG decreased. After HbG pretreatment, a further increase of ET-1 and hepatocellular injury was observed, whereas PDRICG further decreased. Application of bosentan after HbG but not after vehicle pretreatment significantly improved PDRICG and liver perfusion, whereas NAD(P)H and hepatocellular injury decreased. Furthermore, cytokine release changed to an anti-inflammatory response. These data suggest an HbG-dependent increase of ET-1, which may contribute to delayed side effects under shock conditions.


PLOS ONE | 2010

Bringing the Hospital to the Patient: First Treatment of Stroke Patients at the Emergency Site

Silke Walter; Panagiotis Kostpopoulos; Anton Haass; Stefan Helwig; Isabel Keller; Tamara Licina; Thomas Schlechtriemen; Christian L. Roth; P. Papanagiotou; Anna Zimmer; Julio Vierra; Heiko Körner; Kathrin Schmidt; Marie-Sophie Romann; Maria Alexandrou; Umut Yilmaz; Iris Q. Grunwald; Darius Kubulus; Martin Lesmeister; Stephan Ziegeler; Alexander Pattar; Martin Golinski; Yang Liu; Thomas Volk; Thomas Bertsch; W. Reith; Klaus Fassbender

Collaboration


Dive into the Darius Kubulus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inge Bauer

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge