Dariusz C. Górecki
University of Portsmouth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dariusz C. Górecki.
Journal of Cell Biology | 2008
Grzegorz M. Wilczynski; Filip A. Konopacki; Ewa Wilczek; Zofia Lasiecka; Adam Gorlewicz; Piotr Michaluk; Marcin Wawrzyniak; Monika Malinowska; Pawel Okulski; Lukasz R. Kolodziej; Witold Konopka; Kamila Duniec; Barbara Mioduszewska; Evgeni Nikolaev; Agnieszka Walczak; Dorota Owczarek; Dariusz C. Górecki; Werner Zuschratter; Ole Petter Ottersen; Leszek Kaczmarek
Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE.
Journal of Biological Chemistry | 2007
Piotr Michaluk; Lukasz R. Kolodziej; Barbara Mioduszewska; Grzegorz M. Wilczynski; Joanna Dzwonek; Jacek Jaworski; Dariusz C. Górecki; Ole Petter Ottersen; Leszek Kaczmarek
Matrix metalloproteinase-9 has recently emerged as an important molecule in control of extracellular proteolysis in the synaptic plasticity. However, no synaptic targets for its enzymatic activity had been identified before. In this report, we show that β-dystroglycan comprises such a neuronal activity-driven target for matrix metalloproteinase-9. This notion is based on the following observations. (i) Recombinant, autoactivating matrix metalloproteinase-9 produces limited proteolytic cleavage of β-dystroglycan. (ii) In neuronal cultures, β-dystroglycan proteolysis occurs in response to stimulation with either glutamate or bicuculline and is blocked by tissue inhibitor of metalloproteinases-1, a metalloproteinase inhibitor. (iii) β-Dystroglycan degradation is also observed in the hippocampus in vivo in response to seizures but not in the matrix metalloproteinase-9 knock-out mice. (iv) β-Dystroglycan cleavage correlates in time with increased matrix metalloproteinase-9 activity. (v) Finally, β-dystroglycan and matrix metalloproteinase-9 colocalize in postsynaptic elements in the hippocampus. In conclusion, our data identify the β-dystroglycan as a first matrix metalloproteinase-9 substrate digested in response to enhanced synaptic activity. This demonstration may help to understand the possible role of both proteins in neuronal functions, especially in synaptic plasticity, learning, and memory.
Journal of Biological Chemistry | 2009
Annette Nicke; Yung-Hui Kuan; Jürgen Rettinger; Benjamin Marquez-Klaka; Olaf Bender; Dariusz C. Górecki; Ruth D. Murrell-Lagnado; Florentina Soto
The ATP-activated P2X7 receptor channel is involved in immune function and inflammatory pain and represents an important drug target. Here we describe a new P2X7 splice variant (P2X7(k)), containing an alternative intracellular N terminus and first transmembrane domain encoded by a novel exon 1 in the rodent P2rx7 gene. Whole cell patch clamp recordings of the rat isoform expressed in HEK293 cells revealed an 8-fold higher sensitivity to the agonist Bz-ATP and much slower deactivation kinetics when compared with the P2X7(a) receptor. Permeability measurements in Xenopus oocytes show a high permeability for N-methyl-d-glucamine immediately upon activation, suggesting that the P2X7(k) channel is constitutively dilated upon opening. The rates of agonist-induced dye uptake and membrane blebbing in HEK cells were also increased. PCR analyses and biochemical analysis by SDS-PAGE and BN-PAGE indicate that the P2X7(k) variant escapes gene deletion in one of the available P2X7−/− mice strains and is strongly expressed in the spleen. Taken together, we describe a novel P2X7 isoform with distinct functional properties that contributes to the diversity of P2X7 receptor signaling. Its presence in one of the P2X7−/− strains has important implications for our understanding of the role of this receptor in health and disease.
The FASEB Journal | 2005
Joanna Dłużniewska; Anna Sarnowska; Małgorzata Beręsewicz; I.P. Johnson; Surjit Kaila Srai; Bala Ramesh; Geoffrey Goldspink; Dariusz C. Górecki; Barbara Zabłocka
The ischemic stroke is the third leading cause of death in developed countries. The C‐terminal peptide of mechano‐growth factor (MGF), an alternatively spliced variant of insulin‐like growth factor 1 (IGF‐1), was found to function independently from the rest of the molecule and showed a neuroprotective effect in vivo and in vitro. In vivo, in a gerbil model of transient brain ischemia, treatment with the synthetic MGF C‐terminal peptide provided very significant protection to the vulnerable neurons. In the same model, ischemia evoked increased expression of endogenous MGF in the ischemia‐resistant hippocampal neurons, suggesting that the endogenous MGF might have an important neuroprotective function. In an in vitro organotypic hippocampal culture model of neurodegeneration, the synthetic peptide was as potent as the full‐length IGF‐1 while its effect lasted significantly longer than that of recombinant IGF‐1. While two peptides showed an additive effect, the neuroprotective action of the C‐terminal MGF was independent from the IGF‐1 receptor, indicating a new mode of action for this molecule. Although MGF is known for its regenerative capability in skeletal muscle, our findings demonstrate for the first time a neuroprotective role against ischemia for this specific IGF‐1 isoform. Therefore, the C‐terminal MGF peptide has a potential to be developed into a therapeutic modality for the prevention of neuronal damage.
Expert Opinion on Drug Delivery | 2009
Eugen Barbu; Éva Molnár; John Tsibouklis; Dariusz C. Górecki
The development of blood–brain barrier (BBB)-targeting technologies is a very active field of research: targeting therapeutic actives to the central nervous system by means of systemic administration means crossing the BBB, and this is now one of the most challenging problems in drug development. The BBB is a unique regulatory system that protects the brain environment by separating it from direct contact with the circulating blood. In doing so, it impedes at the same time the access of a large number of diagnostic and therapeutic agents into the brain parenchyma. One of the possibilities of bypassing this barrier relies on specific properties of nanoparticulate vectors designed to interact with BBB-forming cells at a molecular level, as a result of which the transport of drugs or other molecules (such as nucleic acids, proteins or imaging agents) could be achieved without interfering with the normal function of the brain. This article summarises several recent example applications, presents emerging work and highlights the directions for further developments in this area.
Journal of Biological Chemistry | 2009
Miyyada Boumechache; J. Michael Edwardson; Dariusz C. Górecki; Ruth D. Murrell-Lagnado
P2X4 and P2X7 are the predominant P2X receptor subtypes expressed in immune cells. Having previously shown a structural and functional interaction between the two recombinant receptors, our aims here were to identify the preferred assembly pathway of the endogenous receptors in macrophage-like cells and to investigate the trafficking of these receptors between the plasma membrane and intracellular sites. We exploited the difference in size between the two subunits, and we used a combination of cross-linkers and blue native-PAGE analysis to investigate the subunit composition of complexes present in primary cultures of rat microglia and macrophages from wild type and P2X7–/– mice. Our results indicate that the preferred assembly pathway for both receptors is the formation of homotrimers. Homotrimers of P2X7 were able to co-immunoprecipitate with P2X4, suggesting that an interaction occurs between rather than within receptor complexes. In both macrophages and microglia, P2X7 receptors were predominantly at the cell surface, whereas P2X4 receptors were predominantly intracellular. There were clear cell type-dependent differences in the extent to which P2X4 receptors trafficked to and from the surface; trafficking was much more dynamic in microglia than in the macrophages, and further activation of cultured microglia with relatively short (3-h) incubations with lipopolysaccharide caused an ∼4-fold increase in the fraction of receptors at the surface with only a 1.2-fold increase in total expression. The redistribution of intracellular receptors is thus an efficient means of enhancing the functional expression of P2X4 at the plasma membrane of microglia.
British Journal of Pharmacology | 2012
Christopher N. J. Young; KoiNi Lim; Sara J Barnes; Xing Jian Xu; Viola Marschall; Wojciech Brutkowski; Elizabeth R. Mooney; Dariusz C. Górecki; Ruth D. Murrell-Lagnado
BACKGROUND AND PURPOSE Splice variants of P2X7 receptor transcripts contribute to the diversity of receptor‐mediated responses. Here, we investigated expression and function of C‐terminal truncated (ΔC) variants of the mP2X7 receptor, which are predicted to escape inactivation in one strain of P2X7−/− mice (Pfizer KO).
Expert Opinion on Emerging Drugs | 2001
Dariusz C. Górecki
The gene therapy approach can vary from delivering extra copies of a gene, through modifications of a genome using the properties of ribozymes or chimeraplasts, to injection of modified cells. For the treatment of genetic deficits the ultimate goal would be the repair of the mutated gene in the target tissue(s). The techniques required for such an approach are emerging, albeit slowly. Therefore, delivery of an extra copy of a normal gene in a specific vector remains the predominant approach. Moreover, this method finds wider applications in gene therapy relating to disorders other than heritable defects, e.g., malignancies, cardiovascular diseases and infections. The major and most intensive areas of research are: i) vectors and delivery methods, ii) regulation of transgene expression and iii) stability of expression. Targeting of the therapeutic gene is being accomplished by using viral vectors or non-viral delivery systems, either ex vivo or in vivo. The choice of vectors and delivery routes depends on the nature of the target cells and the required levels and stability of expression. Although there have been the first positive clinical results and significant technical achievements over the past 2 years, there are still obstacles to the development of effective clinical products and these remain largely unchanged. The most important barriers are the low levels and stability of expression and immune responses to vectors and/or gene products. The safety aspects of gene therapy have become painfully evident with the first death conclusively linked to gene therapy. The progress in AAV and lentiviral vectors, improved regulation of transgene expression and advances in stem cell technology are among the recent most exciting developments.
Neuroreport | 1995
Dariusz C. Górecki; Eric A. Barnard
Duchenne muscular dystrophy is associated with mental retardation and several dystrophin transcripts are differentially expressed in specific brain areas. G-dystrophin (Dp71) is known to be the predominant isoform in the brain. We have localized its mRNA to be present predominantly in the dentate gyrus and in the olfactory bulb. This distribution is specific and significantly different from that for the full-size dystrophin transcripts, present mainly in CA regions of the hippocampus, in the cerebral cortex and in cerebellar Purkinje cells. Furthermore, our data show that the various dystrophins co-localize with the dystroglycan in the brain.
Journal of Nanobiotechnology | 2004
Sivanand S. Pennadam; Keith Firman; Cameron Alexander; Dariusz C. Górecki
The exploitation of natures machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition.The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams [1, 2]. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales [3]. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function [4].