Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dariusz Orlowski is active.

Publication


Featured researches published by Dariusz Orlowski.


Journal of Visualized Experiments | 2011

Basic Surgical Techniques in the Göttingen Minipig: Intubation, Bladder Catheterization, Femoral Vessel Catheterization, and Transcardial Perfusion

Kaare S. Ettrup; Andreas Nørgaard Glud; Dariusz Orlowski; Lise M. Fitting; Kaare Meier; Jens Christian Soerensen; Carsten R. Bjarkam; Aage Kristian Olsen Alstrup

The emergence of the Göttingen minipig in research of topics such as neuroscience, toxicology, diabetes, obesity, and experimental surgery reflects the close resemblance of these animals to human anatomy and physiology 1-6.The size of the Göttingen minipig permits the use of surgical equipment and advanced imaging modalities similar to those used in humans 6-8. The aim of this instructional video is to increase the awareness on the value of minipigs in biomedical research, by demonstrating how to perform tracheal intubation, transurethral bladder catheterization, femoral artery and vein catheterization, as well as transcardial perfusion. Endotracheal Intubation should be performed whenever a minipig undergoes general anesthesia, because it maintains a patent airway, permits assisted ventilation and protects the airways from aspirates. Transurethral bladder catheterization can provide useful information about about hydration state as well as renal and cardiovascular function during long surgical procedures. Furthermore, urinary catheterization can prevent contamination of delicate medico-technical equipment and painful bladder extension which may harm the animal and unnecessarily influence the experiment due to increased vagal tone and altered physiological parameters. Arterial and venous catheterization is useful for obtaining repeated blood samples and monitoring various physiological parameters. Catheterization of femoral vessels is preferable to catheterization of the neck vessels for ease of access, when performing experiments involving frame-based stereotaxic neurosurgery and brain imaging. When performing vessel catheterization in survival studies, strict aseptic technique must be employed to avoid infections6. Transcardial perfusion is the most effective fixation method, and yields preeminent results when preparing minipig organs for histology and histochemistry2,9. For more information about anesthesia, surgery and experimental techniques in swine in general we refer to Swindle 2007. Supplementary information about premedication and induction of anesthesia, assisted ventilation, analgesia, pre- and postoperative care of Göttingen minipigs are available via the internet at http://www.minipigs.com10. For extensive information about porcine anatomy we refer to Nickel et al. Vol. 1-511.


Stress | 2012

Wistar rats subjected to chronic restraint stress display increased hippocampal spine density paralleled by increased expression levels of synaptic scaffolding proteins

Dariusz Orlowski; Heidi Kaastrup Müller; Gregers Wegener; Carsten R. Bjarkam

The aim of this study was to investigate whether the previously reported effect of chronic restraint stress (CRS) on hippocampal neuron morphology and spine density is paralleled by a similar change in the expression levels of synaptic scaffolding proteins. Adult male Wistar rats were subjected either to CRS (6 h/day) for 21 days or to control conditions. The resulting brains were divided and one hemisphere was impregnated with Golgi-Cox before coronal sectioning and autometallographic development. Neurons from CA1, CA3b, CA3c, and dentate gyrus (DG) area were reconstructed and subjected to Sholl analysis and spine density estimation. The contralateral hippocampus was used for quantitative real-time polymerase chain reaction and protein analysis of genes associated with spine density and morphology (the synaptic scaffolding proteins: Spinophilin, Homer1-3, and Shank1-3). In the CA3c area, CRS decreased the number of apical dendrites and their total length, whereas CA1 and DG spine density were significantly increased. Analysis of the contralateral hippocampal homogenate displayed an increased gene expression of Spinophilin, Homer1, Shank1, and Shank2 and increased protein expression of Spinophilin and Homer1 in the CRS animals. In conclusion, CRS influences hippocampal neuroplasticity by modulation of dendrite branching pattern and spine density paralleled by increased expression levels of synaptic scaffolding proteins.


Journal of Neuroscience Methods | 2012

A simple reproducible and time saving method of semi-automatic dendrite spine density estimation compared to manual spine counting.

Dariusz Orlowski; Carsten R. Bjarkam

Estimation of spine number and spine density by manual counting under the assumption that all dendrite protrusions equal spines are often used in studies on neuroplasticity occurring during health, brain diseases, and different experimental paradigms. Manual spine counting is, however, time consuming and biased by inter-observer variation. We present accordingly a quick, reproducible and simple non-stereological semi-automatic spine density estimation method based on the irregularity of the dendrite surface. Using the freeware ImageJ program, microphotographs of Golgi impregnated hippocampal dendrites derived from a previously performed study on the impact of chronic restrained stress were binarized, skeletonized, and the skeleton endings assumed to represent spine positions were counted and the spine densities calculated. The results based on 754 dendrite fragments were compared to manual spine counting of the same dendrite fragments using the Bland-Altman method. The results from both methods were correlated (r=0.79, p<0.0001), The semi-automatic counting method gave a statistically higher (approx. 4%) spine density number, but both counting methods showed similar significant differences between the groups in the CA1 area, and no differences between the groups in the CA3 area. In conclusion, the presented semi-automatic spine density estimation method yields consistently a higher spine density number than manual counting resulting in similar significance between groups. The proposed method may therefore be a reproducible time saving and useful non-stereological approach to spine counting in neuroplasticity studies requiring analysis of hundreds of dendrites.


Histochemistry and Cell Biology | 2009

Autometallographic enhancement of the Golgi-Cox staining enables high resolution visualization of dendrites and spines

Dariusz Orlowski; Carsten R. Bjarkam

We present a method for autometallographic (AMG) enhancement of the Golgi-Cox staining enabling high resolution visualization of dendrites and spines. The method is cheaper and more flexible than conventional enhancement procedures performed with commercial photographic developers. The staining procedure is thoroughly described and we demonstrate with qualitative and quantitative data, how histological tissue sectioning, Golgi-Cox immersion time and different AMG enhancement length may influence the staining of dendrites and spines in the rat hippocampus. The described method will be of value for future behavioural-anatomical studies, examining changes in dendrite branching and spine density caused by brain diseases and their subsequent treatment.


International Journal of Phytoremediation | 2010

Role of Mycorrhizal Colonization in Plant Establishment on an Alkaline Gold Mine Tailing

Elżbieta Orłowska; Dariusz Orlowski; Jolanta Mesjasz-Przybyłowicz; Katarzyna Turnau

The potential role of arbuscular mycorrhizal fungi (AMF) in the revegetation of an alkaline gold mine tailing was studied in Barberton, South Africa. The tailing, characterized by a slow spontaneous plant succession, is colonized by the shrub Dodonaea viscosa and the grasses, Andropogon eucomus and Imperata cylindrica, all colonized by AMF. The effectiveness of mycorrhizal colonization in grasses was tested under laboratory conditions using fungal isolates of various origins. Both grasses were highly mycorrhiza dependent, and the presence of mycorrhizal colonization significantly increased their biomass and survival rates. The fungi originating from the gold tailing were better adapted to the special conditions of the tailing than the control isolate. Although the total colonization rate found for native fungi was lower than for fungi from non-polluted sites, they were more vital and more effective in promoting plant growth. The results obtained might serve as a practical approach to the phytostabilization of alkaline gold tailings.


Journal of Visualized Experiments | 2017

Exposure of the Pig CNS for Histological Analysis: A Manual for Decapitation, Skull Opening, and Brain Removal

Carsten R. Bjarkam; Dariusz Orlowski; Laura Tvilling; Johannes Bech; Andreas Nørgaard Glud; Jens Christian Sørensen

Pigs have become increasingly popular in large-animal translational neuroscience research as an economically and ethically feasible substitute to non-human primates. The large brain size of the pig allows the use of conventional clinical brain imagers and the direct use and testing of neurosurgical procedures and equipment from the human clinic. Further macroscopic and histological analysis, however, requires postmortem exposure of the pig central nervous system (CNS) and subsequent brain removal. This is not an easy task, as the pig CNS is encapsulated by a thick, bony skull and spinal column. The goal of this paper and instructional video is to describe how to expose and remove the postmortem pig brain and the pituitary gland in an intact state, suitable for subsequent macroscopic and histological analysis.


European Neuropsychopharmacology | 2015

Potential roles for Homer1 and Spinophilin in the preventive effect of electroconvulsive seizures on stress-induced CA3c dendritic retraction in the hippocampus

Heidi Kaastrup Müller; Dariusz Orlowski; Carsten R. Bjarkam; Gregers Wegener

Electroconvulsive therapy (ECT) remains the treatment of choice for patients with severe or drug-resistant depressive disorders, yet the mechanism behind its efficacy remains poorly characterized. In the present study, we used electroconvulsive seizures (ECS), an animal model of ECT, to identify proteins possibly involved in the preventive effect of ECS on stress-induced neuronal atrophy in the hippocampus. Rats were stressed daily using the 21-day 6h daily restraint stress paradigm and subjected to sham seizures, a single ECS on the last day of the restraint period or daily repeated seizures for 10 consecutive days during the end of the restraint period. Consistent with previous findings, dendritic atrophy was observed in the CA3c hippocampal region of chronically stressed rats. In addition, we confirmed our recent findings of increased spine density in the CA1 region following chronic restraint stress. The morphological alterations in the CA3c area were prevented by treatment with ECS. On the molecular level, we showed that the synaptic proteins Homer1 and Spinophilin are targeted by ECS. Repeated ECS blocked stress-induced up-regulation of Spinophilin protein levels and further increased the stress-induced up-regulation of Homer1. Given the roles of Spinophilin in the regulation of AMPA receptors and Homer1 in the regulation of metabotropic glutamate receptors (mGluRs), our data imply the existence of a mechanism where ECS regulate cell excitability by modulating AMPA receptor function and mGluR related calcium homeostasis. These molecular changes could potentially contribute to the mechanism induced by ECS which prevents the stress-induced morphological changes in the CA3c region.


Journal of Neuroscience Methods | 2017

A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.

Andreas Nørgaard Glud; Johannes Bech; Laura Tvilling; Hamed Zaer; Dariusz Orlowski; Lise M. Fitting; Dora Ziedler; Michael Geneser; Ryan Sangill; Aage Kristian Olsen Alstrup; Carsten R. Bjarkam; Jens Christian Sørensen

BACKGROUND Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. NEW METHOD We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. RESULTS Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. COMPARISON WITH EXISTING METHOD The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. CONCLUSION The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems.


Journal of Neuroscience Research | 2018

Erythropoietin prevents the effect of chronic restraint stress on the number of hippocampal CA3c dendritic terminals-relation to expression of genes involved in synaptic plasticity, angiogenesis, inflammation, and oxidative stress in male rats

Nadia Aalling; Ida Hageman; Kamilla W. Miskowiak; Dariusz Orlowski; Gregers Wegener; Gitta Wörtwein

Stress‐induced allostatic load affects a variety of biological processes including synaptic plasticity, angiogenesis, oxidative stress, and inflammation in the brain, especially in the hippocampus. Erythropoietin (EPO) is a pleiotropic cytokine that has shown promising neuroprotective effects. Recombinant human EPO is currently highlighted as a new candidate treatment for cognitive impairment in neuropsychiatric disorders. Because EPO enhances synaptic plasticity, attenuates oxidative stress, and inhibits generation of proinflammatory cytokines, EPO may be able to modulate the effects of stress‐induced allostatic load at the molecular level. The aim of this study was therefore to investigate how EPO and repeated restraint stress, separately and combined, influence (i) behavior in the novelty‐suppressed feeding test of depression/anxiety‐related behavior; (ii) mRNA levels of genes encoding proteins involved in synaptic plasticity, angiogenesis, oxidative stress, and inflammation; and (iii) remodeling of the dendritic structure of the CA3c area of the hippocampus in male rats. As expected, chronic restraint stress lowered the number of CA3c apical dendritic terminals, and EPO treatment reversed this effect. Interestingly, these effects seemed to be mechanistically distinct, as stress and EPO had differential effects on gene expression. While chronic restraint stress lowered the expression of spinophilin, tumor necrosis factor α, and heat shock protein 72, EPO increased expression of hypoxia‐inducible factor‐2α and lowered the expression of vascular endothelial growth factor in hippocampus. These findings indicate that the effects of treatment with EPO follow different molecular pathways and do not directly counteract the effects of stress in the hippocampus.


Neuromodulation | 2017

Brain Tissue Reaction to Deep Brain Stimulation—A Longitudinal Study of DBS in the Goettingen Minipig

Dariusz Orlowski; Alexandre Michalis; Andreas Nørgaard Glud; Anders R. Korshøj; Lise M. Fitting; Trine Werenberg Mikkelsen; André Mercanzini; Alain Jordan; Alain Dransart; Jens Sörensen

The use of Deep Brain Stimulation (DBS) in treatment of various brain disorders is constantly growing; however, the number of studies of the reaction of the brain tissue toward implanted leads is still limited. Therefore, the aim of our study was to analyze the impact of DBS leads on brain tissue in a large animal model using minipigs.

Collaboration


Dive into the Dariusz Orlowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.J. Przybylowicz

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge