Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dariusz Rakus is active.

Publication


Featured researches published by Dariusz Rakus.


Biochimica et Biophysica Acta | 2016

Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer.

James A. McCubrey; Dariusz Rakus; Agnieszka Gizak; Linda S. Steelman; Steve L. Abrams; Kvin Lertpiriyapong; Timothy L. Fitzgerald; Li V. Yang; Giuseppe Montalto; Melchiorre Cervello; Massimo Libra; Ferdinando Nicoletti; Aurora Scalisi; Francesco Torino; Concettina Fenga; Luca M. Neri; Sandra Marmiroli; Lucio Cocco; Alberto M. Martelli

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.


Comparative Biochemistry and Physiology B | 2000

Kinetic properties of pig (Sus scrofa domestica) and bovine (Bos taurus) D-fructose-1,6-bisphosphate 1-phosphohydrolase (F1,6BPase): liver-like isozymes in mammalian lung tissue.

Dariusz Rakus; Krzysztof Skałecki; Andrzej Dzugaj

F1,6BPases from porcine and bovine lung were isolated and their kinetic properties were determined. Ks, Kis and beta were determined assuming partial-noncompetitive inhibition (simple intersecting hyperbolic noncompetitive inhibition) of the enzyme by the substrate. Values for Ks were 4.1 and 4.4 microM for porcine and bovine F1,6BPase, respectively and values for 1 were close to 0.55 in both cases. Kis were 9 and 15 microM for porcine and bovine F1,6BPase, respectively. I0.5 for AMP were determined as 7 microM for pig enzyme and 14 microM for F1,6BPase from bovine lung. The enzymes were inhibited by F2,6BP with Kis of 0.19 and 0.21 microM for porcine and bovine enzymes, respectively. In the presence of AMP concentration equal to I0.5, the Ki values for pig and bovine enzymes were 0.07 and 0.09 microM, respectively. The levels of F2,6BP, AMP and antioxidant enzymes activities in pig and bovine lung tissues were also determined. The cDNA coding sequence of pig lung F1,6BPase1 showed a high homology with pig liver enzyme, differing only in four positions (G/C-63, T/A-808, G/C-884 and T/A-1005) resulting in a single amino acid substitution (Gly-295 for Ala-295). It is hypothesized that the lung F1,6BPase participates in gluconeogenesis, surfactant synthesis and antioxidant reactions.


FEBS Letters | 2005

The effect of calcium ions on subcellular localization of aldolase-FBPase complex in skeletal muscle

Piotr Mamczur; Dariusz Rakus; Agnieszka Gizak; Danuta Dus; Andrzej Dzugaj

In skeletal muscles, FBPase–aldolase complex is located on α‐actinin of the Z‐line. In the present paper, we show evidence that stability of the complex is regulated by calcium ions. Real time interaction analysis, confocal microscopy and the protein exchange method have revealed that elevated calcium concentration decreases association constant of FBPase–aldolase and FBPase‐α‐actinin complex, causes fast dissociation of FBPase from the Z‐line and slow accumulation of aldolase within the I‐band and M‐line. Therefore, the release of Ca2+ during muscle contraction might result, simultaneously, in the inhibition of glyconeogenesis and in the acceleration of glycolysis.


Glia | 2015

Astrocyte-Neuron Crosstalk Regulates the Expression and Subcellular Localization of Carbohydrate Metabolism Enzymes

Piotr Mamczur; Borys Borsuk; Jadwiga Paszko; Zuzanna Sas; Jerzy W. Mozrzymas; Jacek R. Wisniewski; Agnieszka Gizak; Dariusz Rakus

Astrocytes releasing glucose‐ and/or glycogen‐derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co‐culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co‐culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte‐neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. GLIA 2015;63:328–340


Biochimica et Biophysica Acta | 2013

Nuclear localization of aldolase A correlates with cell proliferation

Piotr Mamczur; Andrzej Gamian; Jerzy Kołodziej; Piotr Dziegiel; Dariusz Rakus

Muscle fructose 1,6-bisphosphate aldolase (ALDA) is a glycolytic enzyme which may localize both in nuclei and cytoplasm of cells, however its role in the nuclei is unclear. Here, we demonstrate the links between subcellular localization of ALDA and the cell cycle progression as well as the availability of energetic substrates. Results of our studies indicate that nuclear localization of ALDA correlates with the proliferative activity of the cells and with the expression of Ki-67, a marker of proliferation, both in the KLN-205 (mouse lung cancer cells) and human squamous cell lung cancer cells (hSCC). Chemically-induced block of cell cycle entry in S phase and the inhibition of transcription stimulate removal of ALDA from cells nuclei suggesting that nuclear ALDA is involved in cells proliferation. On the other hand, subcellular distribution of the enzyme also depends on the stress and pro-survival signals mediated by the Akt and the p38 pathways and, in non-proliferating cells, on the availability of glucose and lactate. The results presented here point to ALDA as a factor involved in the regulation of cells proliferation.


Biological Chemistry | 2003

Different sensitivities of mutants and chimeric forms of human muscle and liver fructose-1,6-bisphosphatases towards AMP

Dariusz Rakus; Harald Tillmann; Robert Wysocki; Stanislaw Ulaszewski; Klaus Eschrich; Andrzej Dzugaj

Abstract AMP is an allosteric inhibitor of human muscle and liver fructose-1,6-bisphosphatase (FBPase). Despite strong similarity of the nucleotide binding domains, the muscle enzyme is inhibited by AMP approximately 35 times stronger than liver FBPase: I0.5 for muscle and for liver FBPase are 0.14 uM and 4.8 uM, respectively. Chimeric human muscle (L50M288) and chimeric human liver enzymes (M50L288), in which the N-terminal residues (1-50) were derived from the human liver and human muscle FBPases, respectively, were inhibited by AMP 2-3 times stronger than the wild-type liver enzyme. An amino acid exchange within the Nterminal region of the muscle enzyme towards liver FBPase (Lys20→Glu) resulted in 13-fold increased I0.5 values compared to the wild-type muscle enzyme. However, the opposite exchanges in the liver enzyme (Glu20→Lys and double mutation Glu19→Asp/Glu20→Lys) did not change the sensitivity for AMP inhibition of the liver mutant (I0.5 value of 4.9 uM). The decrease of sensitivity for AMP of the muscle mutant Lys20→Glu, as well as the lack of changes in the inhibition by AMP of liver mutants Glu20→Lys and Glu19→Asp/Glu20→Lys, suggest a different mechanism of AMP binding to the muscle and liver enzyme.


Oncotarget | 2017

Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells

James A. McCubrey; Timothy L. Fitzgerald; Li V. Yang; Kvin Lertpiriyapong; Linda S. Steelman; Stephen L. Abrams; Giuseppe Montalto; Melchiorre Cervello; Luca M. Neri; Lucio Cocco; Alberto M. Martelli; Piotr Laidler; Joanna Dulińska-Litewka; Dariusz Rakus; Agnieszka Gizak; Ferdinando Nicoletti; Luca Falzone; Saverio Candido; Massimo Libra

Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed.


Biochimica et Biophysica Acta | 2009

Nuclear targeting of FBPase in HL-1 cells is controlled by beta-1 adrenergic receptor-activated Gs protein signaling cascade

Agnieszka Gizak; Marek Zarzycki; Dariusz Rakus

Muscle fructose 1,6-bisphosphatase (FBPase), a well-known regulatory enzyme of glyconeogenic pathway has recently been found inside nuclei of several cell types (cardiomyocytes, smooth muscle cells, myogenic progenitor cells). This surprising finding raised a question concerning the role of FBPase in this compartment of the cell, and of the extracellular signals regulating nuclear transport of the enzyme. In the present paper we show that, in HL-1 cardiomyocyte cell line, the activity of adenylyl cyclase and cAMP-dependent protein kinase A is essential to nuclear import of FBPase. The import is also stimulated by isoproterenol (a nonselective beta-adrenergic receptors agonist) and inhibited by metoprolol (a selective beta1 antagonist), strongly suggesting that nucleo-cytoplasmic shuttling of FBPase is under the control of beta1-adrenergic receptor-dependent Gs protein signaling cascade.


Advances in biological regulation | 2016

Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells.

William H. Chappell; Stephen L. Abrams; Kvin Lertpiriyapong; Timothy L. Fitzgerald; Alberto M. Martelli; Lucio Cocco; Dariusz Rakus; Agnieszka Gizak; David M. Terrian; Linda S. Steelman; James A. McCubrey

Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.


Advances in biological regulation | 2017

Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases

James A. McCubrey; Kvin Lertpiriyapong; Linda S. Steelman; Steve L. Abrams; Lucio Cocco; Stefano Ratti; Alberto M. Martelli; Saverio Candido; Massimo Libra; Giuseppe Montalto; Melchiorre Cervello; Agnieszka Gizak; Dariusz Rakus

Natural products or nutraceuticals promote anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. This review will focus on the effects of curcumin (CUR), berberine (BBR) and resveratrol (RES), on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway, with a special focus on GSK-3. These natural products may regulate the pathway by multiple mechanisms including: reactive oxygen species (ROS), cytokine receptors, mirco-RNAs (miRs) and many others. CUR is present the root of turmeric (Curcuma longa). CUR is used in the treatment of many disorders, especially in those involving inflammatory processes which may contribute to abnormal proliferation and promote cancer growth. BBR is also isolated from various plants (Berberis coptis and others) and is used in traditional medicine to treat multiple diseases/conditions including: diabetes, hyperlipidemia, cancer and bacterial infections. RES is present in red grapes, other fruits and berries such as blueberries and raspberries. RES may have some anti-diabetic and anti-cancer effects. Understanding the effects of these natural products on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway may enhance their usage as anti-proliferative agent which may be beneficial for many health problems.

Collaboration


Dive into the Dariusz Rakus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge