Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darko Makovec.
Journal of The European Ceramic Society | 2004
A. Košak; Darko Makovec; Andrej Žnidaršič; Miha Drofenik
Nanocrystalline MnZn-ferrite particles with different morphology were prepared from single water-in-oil microemulsion consisting of n-hexanol as an oil phase, surfactant CTAB and an aqueous solution of mixed metal sulfates. A sodium hydroxide solution was used as the precipitating agent and a hydrogen peroxide as the oxidizing reagent. The synthesized materials were characterized using an X-ray diffraction (XRD), transmission electron microscope (TEM), BET surface analyzer and magnetometry.
Journal of The European Ceramic Society | 2001
Irena Pribošič; Darko Makovec; Miha Drofenik
Abstract The electrical properties of the BaBi 4 Ti 4 O 15 compound, a member of the family of Aurivillius bismuth-based layer-structure perovskites, have been studied as a function of aliovalent doping and processing conditions. The samples were prepared by reaction sintering or hot forging of a mixture of BaTiO 3 and Bi 4 Ti 3 O 12 with Nb substituted for Ti, as a donor dopant, and Fe as an acceptor. The dielectric constant of BaBi 4 Ti 4 O 15 is increased by both dopants. Nb doping decreases the Curie temperature, while Fe doping increases it. The conductivity of BaBi 4 Ti 4 O 15 is p-type and it is decreased by Nb doping and increased by Fe doping. The incorporation of aliovalent dopants into the BaBi 4 Ti 4 O 15 structure, is however, preferentially compensated by the change in the composition of the compound.
Journal of Colloid and Interface Science | 2011
Sašo Gyergyek; Darko Makovec; Miha Drofenik
The colloidal stability of oleic- and ricinoleic-acid-coated nanoparticles in organic solvents with dielectric constants ε(r) ranging from 2.0 to 9.8 was studied. Although the acids are structurally similar, there is an OH group in the ricinoleic acids tail, a marked improvement in the colloidal stability of the ricinoleic-acid-coated magnetic nanoparticles in moderately polar organic solvents and monomer methyl methacrylate was observed as a result. The bonding of both acids provokes a significant change in the surface properties of the iron-oxide nanoparticles. A clear shift from a strong electron-donor to a weak electron-donor was confirmed with the bonding of the oleic acid. The effect of ricinoleic acid bonding is even more dramatic: a clear shift toward a weak electron-acceptor is evident. A detailed analysis of the total energy of interaction, including the vOCG theory, between two particles was used to describe the different behaviors of the coated nanoparticles. In the case of the oleic acid nanoparticles in an apolar medium, such as decane, a small net attraction of ∼0.84k(B)T, which is insufficient to cause nanoparticles agglomeration, exists. In polar media the net attraction is larger than 1.5k(B)T, resulting in precipitation of the oleic-acid-coated nanoparticles. The same findings apply to the ricinoleic-acid-coated nanoparticles, but only when dispersed in the apolar medium. In the polar medium an additional repulsion due to polar solvation forces exists, resulting in a decrease of the net attraction to as low as ∼0.14k(B)T.
Aquatic Toxicology | 2015
Tina Mesarič; Chiara Gambardella; Tamara Milivojević; Marco Faimali; Damjana Drobne; Carla Falugi; Darko Makovec; Anita Jemec; Kristina Sepčić
We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change.
ACS Nano | 2015
Slavko Kralj; Darko Makovec
We report on the syntheses of magnetoresponsive, superparamagnetic nanostructures with highly anisotropic shapes, i.e., nanochains of controlled length and their bundles (nanobundles). These nanochains and nanobundles were obtained by the simultaneous magnetic assembly of superparamagnetic nanoparticle clusters (SNCs) and the fixation of the assembled SNCs with an additional layer of deposited silica, produced by a sol-gel process. This low-cost approach provides excellent length control of the short nanochains (approximately 6 or 14 SNCs per nanochain) and fine-tuning of the spacing between the neighboring SNCs inside an individual nanochain. Our magnetically responsive superparamagnetic nanostructures have a controlled aspect ratio, a uniform size, and a well-defined shape, and they express good colloidal stability. This general approach should lead to new, advanced applications of the nanochains and nanobundles in the treatment of cancer and in the ability to magnetically manipulate liquid and photonic crystals.
Journal of Chromatography B | 2008
Marjan Bele; Gorazd Hribar; Stanislav Čampelj; Darko Makovec; Vladka Gaberc-Porekar; Milena Zorko; Miran Gaberšček; Janko Jamnik; Peter Venturini
The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.
Environmental Science & Technology | 2013
Sara Novak; Damjana Drobne; Miha Golobič; Jernej Zupanc; Tea Romih; Alessandra Gianoncelli; M. Kiskinova; Burkhard Kaulich; Primož Pelicon; Primož Vavpetič; Luka Jeromel; Nina Ogrinc; Darko Makovec
With a model invertebrate animal, we have assessed the fate of magnetic nanoparticles in biologically relevant media, i.e., digestive juices. The toxic potential and the internalization of such nanoparticles by nontarget cells were also examined. The aim of this study was to provide experimental evidence on the formation of Co(2+), Fe(2+), and Fe(3+) ions from CoFe₂O₄ nanoparticles in the digestive juices of a model organism. Standard toxicological parameters were assessed. Cell membrane stability was tested with a modified method for measurement of its quality. Proton-induced X-ray emission and low energy synchrotron radiation X-ray fluorescence were used to study internalization and distribution of Co and Fe. Co(2+) ions were found to be more toxic than nanoparticles. We confirmed that Co(2+) ions accumulate in the hepatopancreas, but Fe(n+) ions or CoFe₂O₄ nanoparticles are not retained in vivo. A model biological system with a terrestrial isopod is suited to studies of the potential dissolution of ions and other products from metal-containing nanoparticles in biologically complex media.
Journal of Materials Research | 2004
Darja Lisjak; Darko Makovec; Miha Drofenik
The formation of U-type hexaferrites with the composition Ba 4 B 2 Fe 36 O 60 (B = Co, Ni, Zn) was studied. Samples were characterized by means of x-ray diffraction, electron microscopy (with energy-dispersive spectroscopy), and thermogravimetric and thermomagnetic analyses. U-hexaferrites are formed from the intermediate phases M-hexaferrite (BaFe 12 O 19 ) and Y-hexaferrite (Ba 2 B 2 Fe 12 O 22 ), which at the same time represent units in the U-hexaferrites’ crystal structure. The preparation of monophase U-hexaferrites was made possible by combining high-energy milling or chemical coprecipitation with a calcination at 1250–1300 °C. Structural defects, such as stacking faults, were observed in monophase samples with a high-resolution transmission electron microscope. The observed defects can be regarded as seeds for the formation of other hexaferrite phases after prolonged calcination times or higher calcination temperatures.
Journal of Colloid and Interface Science | 2015
Peter Dušak; Alenka Mertelj; Slavko Kralj; Darko Makovec
Composite particles combining nanoparticles of different functional materials, as well as nanoclusters of nanoparticles of controlled size, can be synthesized by the assembly of nanoparticles in an aqueous suspension. Different interactions between the nanoparticles in the suspension can be applied for their heteroaggregation and controlled by engineering the surface properties of the nanoparticles. The heteroaggregation of nanoparticles in a suspension was studied on a model system composed of superparamagnetic carboxyl-functionalized silica-coated maghemite nanoparticles (cMNPs) (24 nm in size) and larger, amino-functionalized, silica nanoparticles (aSNPs) (92 nm). The heteroaggregates formed with electrostatic attractions between the nanoparticles displaying an opposite electrical surface charge, or with chemical interactions originating from covalent bonding between the molecules at their surfaces. The suspensions were characterized with measurements of the zeta-potential and dynamic light scattering (DLS). The heteroaggregates were analyzed by transmission (TEM) and scanning (SEM) electron microscopy. The kinetics of the heteroaggregation was followed by continuous monitoring of the changes in the average hydrodynamic size by DLS. The results show that covalent bonding is much more effective than attractive electrostatic interactions in terms of a much greater and more homogeneous coverage of the larger central aSNP by the smaller cMNPs in the outer layer.
BMC Veterinary Research | 2013
Metka Šimundić; Barbara Drašler; Vid Šuštar; Jernej Zupanc; Roman Štukelj; Darko Makovec; Deniz Erdogmus; Henry Hägerstrand; Damjana Drobne; Veronika Kralj-Iglič
BackgroundMassive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles.ResultsWashed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation.ConclusionsThese results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.