Darlene Southworth
Southern Oregon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darlene Southworth.
International Journal of Plant Sciences | 2000
Martha E. Apple; David M. Olszyk; Douglas P. Ormrod; James D. Lewis; Darlene Southworth; David T. Tingey
Climate change may have an impact on the productivity of conifer trees by influencing the morphology (size and surface characteristics) and function (capacity for gas exchange) of conifer needles. In order to test the responses of needles to climatic variables, Douglas fir (Pseudotsuga menziesii [Mirb.] Franco), saplings were grown in sunlit controlled environment chambers at ambient or elevated (+200 parts per million above ambient) CO2 and at ambient or elevated temperature (+4°C above ambient). Needle characteristics, including length, width, area, stomatal density (stomata per mm2), percentage of stomatal occlusion, and the morphology of epicuticular wax, were evaluated. Needle function was evaluated as stomatal conductance to water vapor and transpiration. Needle length increased significantly with elevated temperature but not with elevated CO2. Neither elevated CO2 nor elevated temperature affected stomatal density or stomatal number in these hypostomatous needles. Epicuticular wax was less finely granular at elevated than at ambient temperature and was similar in appearance at elevated and ambient CO2. Stomatal conductance and transpiration increased with elevated temperature and associated increased vapor pressure deficit; however, neither conductance nor transpiration was affected by elevated CO2. These results indicate that simulated climate change influences Douglas fir needle structure and function.
International Journal of Plant Sciences | 1997
Sara M. Heath; Darlene Southworth; Jad A. D'Allura
Thlaspi montanum var. siskiyouense occurs as an endemic on serpentine soils in southwestern Oregon, U.S.A. The leaves accumulate nickel at levels up to 3% dry mass. To determine if nickel was localized in particular cells or tissues, leaves were prepared for scanning electron microscopy and energy-dispersive X-ray microanalysis by first soaking the leaves in dimethylglyoxime to precipitate nickel. Leaves were then fixed in glutaraldehyde, dehydrated, and criticalpoint dried. Spectra of leaves of T. montanum var. siskiyouense showed accumulation of nickel, calcium, potassium, and phosphorus. On X-ray maps of the upper and lower epidermis, nickel was localized in the subsidiary cells that surround guard cells but not in guard cells or in other more elongate epidermal cells.
Mycorrhiza | 2005
Darlene Southworth; Xinhua He; W. Swenson; Caroline S. Bledsoe; William R. Horwath
The concept of a common mycorrhizal network implies that the arrangement of plants and mycorrhizal fungi in a community shares properties with other networks. A network is a system of nodes connected by links. Here we apply network theory to mycorrhizas to determine whether the architecture of a potential common mycorrhizal network is random or scale-free. We analyzed mycorrhizal data from an oak woodland from two perspectives: the phytocentric view using trees as nodes and fungi as links and the mycocentric view using fungi as nodes and trees as links. From the phytocentric perspective, the distribution of potential mycorrhizal links, as measured by the number of ectomycorrhizal morphotypes on trees of Quercus garryana, was random with a short tail, implying that all the individuals of this species are more or less equal in linking to fungi in a potential network. From the mycocentric perspective, however, the distribution of plant links to fungi was scale-free, suggesting that certain fungus species may act as hubs with frequent connections to the network. Parallels exist between social networks and mycorrhizas that suggest future lines of study on mycorrhizal networks.
American Journal of Botany | 2005
A. Mariah Moser; Carolyn A. Petersen; Jad A. D'Allura; Darlene Southworth
The diversity of ectomycorrhizal communities associated with Quercus garryana on and off serpentine soils was compared and related to landscape-level diversity. Serpentine soils are high in magnesium, iron, and heavy metals and low in fertility. In plant communities on serpentine soils, a high proportion of flowering plant species are endemic. At three sites with paired serpentine and nonserpentine soils in southwestern Oregon, we sampled Q. garryana roots and categorized ectomycorrhizas by morphotyping and by restriction fragment length patterns. Ectomycorrhizas were abundant at all sites; no single fungal species dominated in the ectomycorrhizas. Of 74 fungal species characterized by morphotype and pattern of restriction fragment length polymorphisms, 46 occurred on serpentine soils, and 32 were unique to serpentine soil. These species are potentially endemic to serpentine soil. Similarities in species composition between paired serpentine and nonserpentine soils were not significantly lower than among three serpentine sites or among three nonserpentine sites. We conclude that mycorrhizal communities associated with oaks on serpentine soil do not differ in species richness or species evenness from those on neighboring nonserpentine soil.
Plant and Soil | 2009
A. Mariah Moser; Jonathan L. Frank; Jad A. D’Allura; Darlene Southworth
Serpentine soils, rich in iron, magnesium, and heavy metals, select for unique plant communities and for endemic species. Because mycorrhizal fungi mediate the interaction between plants and soil, we hypothesized that distinct ectomycorrhizal fungi would colonize Quercus garryana roots on serpentine and nonserpentine soils. We sampled roots of Q. garryana on serpentine soils at two locations in the Klamath-Siskiyou Mountains of southwestern Oregon and identified ectomycorrhizas by morphological and molecular methods. The same six most abundant and most frequent mycorrhizal species, Cenococcum geophilum, Tuber candidum, Genea harknessii, Tomentella sp., Sebacina sp., and Inocybe sp., were found on serpentine and nonserpentine soils. Based on similarities calculated using the Sørensen index in Non-metric Multidimensional Scaling, mycorrhizal communities on serpentine and nonserpentine soils were not significantly different. This study showed that ectomycorrhizal species associated with Q. garryana exhibit edaphic tolerance and were neither reduced nor excluded by serpentinite or peridotite parent materials.
American Journal of Botany | 2013
Marnie E. Rout; Darlene Southworth
Plants are teeming with microbial organisms including those that colonize internal tissues as well as those that adhere to external surfaces. In the rhizosphere, the plant-associated microbiome is intricately involved in plant health and serves as a reservoir of additional genes that plants can access when needed. Microbiome regulation of plant trait expression affects plant performance, which in turn influences various ecosystem functions, such as primary productivity and soil health. Understanding these plant- and microbe-driven interactions requires a study of the nature and effects of the plant microbiome. Conceptualizing the microbiome requires a synthesis of microbial ecology, physiology, and bioinformatics, integrated with insight into host biology and ecology. Microbiome structure and function analyses are recognized as essential components to understand the genetic and functional capacity of the host (previously assigned solely to the host) and include vital aspects of metabolism and physiology. Here, as a special section, we present a set of papers that address the complex interactions between plants and root microbiomes in the rhizosphere. This unseen majority spans scales; with its microorganisms numerically dominant in terrestrial ecosystems, the root microbiome is also involved in plant genetics through integral roles in plant trait expression that can effect community composition and ecosystem functions, such as soil health.
American Journal of Botany | 1997
Darlene Southworth; Mauro Cresti
Differences among flagellated and nonflagellated sperm in land plants are striking, but close examination reveals similarities in pattern of cytoskeleton and in nuclear structure. The microtubular cytoskeleton of flowering plant sperm consists of microtubule bundles arranged obliquely around the nucleus, terminating in cellular extensions. Microtubules are linked into bundles that branch and rejoin along the axis of the sperm cell, forming a cytoskeleton that determines cell shape but does not actively participate in cell movement. Generative cells and sperm share a pattern of microtubules not found in somatic cells. This pattern is initiated in the generative cell, one division before sperm formation, a situation parallel to spermatogenous cell development in vascular plants with flagellated sperm. Chromatin in flagellated and nonflagellated sperm is condensed by specialized histones.
Mycorrhiza | 2009
Darlene Southworth; Elizabeth M. Carrington; Jonathan L. Frank; Peter J. Gould; Connie Harrington; Warren D. Devine
Oak woodland regeneration and restoration requires that seedlings develop mycorrhizas, yet the need for this mutualistic association is often overlooked. In this study, we asked whether Quercus garryana seedlings in nursery beds acquire mycorrhizas without artificial inoculation or access to a mycorrhizal network of other ectomycorrhizal hosts. We also assessed the relationship between mycorrhizal infection and seedling growth in a nursery. Further, we compared the mycorrhizal assemblage of oak nursery seedlings to that of conifer seedlings in the nursery and to that of oak seedlings in nearby oak woodlands. Seedlings were excavated and the roots washed and examined microscopically. Mycorrhizas were identified by DNA sequences of the internal transcribed spacer region and by morphotype. On oak nursery seedlings, predominant mycorrhizas were species of Laccaria and Tuber with single occurrences of Entoloma and Peziza. In adjacent beds, seedlings of Pseudotsuga menziesii were mycorrhizal with Hysterangium and a different species of Laccaria; seedlings of Pinus monticola were mycorrhizal with Geneabea, Tarzetta, and Thelephora. Height of Q. garryana seedlings correlated with root biomass and mycorrhizal abundance. Total mycorrhizal abundance and abundance of Laccaria mycorrhizas significantly predicted seedling height in the nursery. Native oak seedlings from nearby Q. garryana woodlands were mycorrhizal with 13 fungal symbionts, none of which occurred on the nursery seedlings. These results demonstrate the value of mycorrhizas to the growth of oak seedlings. Although seedlings in nursery beds developed mycorrhizas without intentional inoculation, their mycorrhizas differed from and were less species rich than those on native seedlings.
American Journal of Botany | 2010
Kelly R. McDonald; Jason Pennell; Jonathan L. Frank; Darlene Southworth
UNLABELLED PREMISE OF THE STUDY Woody species in the Rosaceae form ectomycorrhizal associations, but the fungal symbionts are unknown. The species of fungi determine whether host plants are isolated from other ectomycorrhizal species in the plant community or linked with other trees through mycorrhizal networks. In this study we identified the fungi that form ectomycorrhizas with Cercocarpus ledifolius (curl-leaf mountain mahogany). • METHODS Soil samples were collected under canopies of C. ledifolius. Ectomycorrhizas were described by morphology and by DNA sequences of the ITS region. Host species were confirmed by rbcL sequences. • KEY RESULTS Sixteen species of fungi were identified from ectomycorrhizas of Cercocarpus ledifolius. The ectomycorrhizal community was distinguished by the presence of a Geopora species situated in the G. arenicola clade and by the absence of Rhizopogon, suilloids, and Sebacinales. Of the species on C. ledifolius, two also occurred on trees of Quercus garryana var. breweri and four on Arctostaphylos sp. • CONCLUSIONS The presence of fungal species in common with other ectomycorrhizal hosts shows that C. ledifolius, Q. garryana var. breweri, and Arctostaphylos species could be linked by a mycorrhizal network, allowing them to exchange nutrients or to share inoculum for seedling roots and new fine roots. Single-host fungi limited to C. ledifolius may improve resource acquisition and reduce competition with other ectomycorrhizal hosts. The finding of a Geopora species as a frequent mycobiont of C. ledifolius suggests that this fungus might be appropriate for inoculating seedlings for habitat restoration.
Sexual Plant Reproduction | 1997
Darlene Southworth; Gregory W. Strout; Scott D. Russell
Abstract Sperm of Plumbago zeylanica are dimorphic with regard to numbers of mitochondria and plastids. In most cases examined, the plastid-rich sperm fused with the egg while the sperm with fewer plastids fused with the central cell. However, plastids cannot be directly responsible for fusion because fusion occurs between the plasma membranes of egg and sperm. The question is whether sperm cell membranes are distinctive and possibly dimorphic. Sperm in whole pollen grains and isolated sperm were freeze-fractured. In pollen, freeze-fractured sperm appeared only in cross fractures. No extended membrane fracture faces of sperm were found. Among isolated sperm, two sizes of sperm with different organelles were observed. Isolated sperm were assigned to two categories based on cell diameter and on size and density of organelles. Membrane particles on most sperm were arranged without distinctive pattern. Some hexagonal arrays were observed. In sperm that had been maintained at 4°C, particle-free areas, a probable consequence of lipid phase separations, appeared on plasma membrane fracture faces. No unique fracture patterns and no patterns of dimorphism were detected on freeze-fractured plasma membranes of Plumbago sperm.