Darrell Alec Patterson
University of Bath
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darrell Alec Patterson.
Langmuir | 2010
Chongwen Zou; Y F Rao; Ahmed Y. Alyamani; Wangsheng Chu; M J Chen; Darrell Alec Patterson; Emma Anna Carolina Emanuelsson; Wei Gao
ZnO/V(2)O(5) core-shell nanostructures have been prepared by a two-step synthesis route through combined hydrothermal growth and magnetron sputtering. After annealing under oxygen ambience, a ZnO/V(2)O(5) heterogeneous lollipop-like nanoarray formed. The microstructure and crystal orientation of those nanolollipops were investigated by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), which show single crystal structure. The optical properties were characterized by UV-vis spectroscopy and showed quite different absorption curves for the as-deposited and annealed samples. The ZnO/V(2)O(5) nanolollipops demonstrated excellent photocatalytic activity in terms of decomposing 2,6-dichlorophenol (2,6-DCP) under visible light, indicating their promising potential as catalysts for industrial wastewater and soil pollution treatments.
Journal of Physical Chemistry B | 2011
Asif A. Qaiser; Margaret M. Hyland; Darrell Alec Patterson
This study elucidates the charge transport processes of polyaniline (PANI) composite membranes and correlates them to the PANI deposition site and the extent of PANI surface layering on the base microporous membranes. PANI was deposited either as a surface layer or inside the pores of cellulose acetate microporous membranes using various in situ chemical polymerization techniques. The extent of PANI layering at the surface of the base membrane and its oxidation and doping states were characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). PANI deposition on the membranes showed a strong dependence on the polymerization technique and polymerization time within a single technique. In XPS, the deconvolution of C 1s and N 1s core-level spectra of the composite membranes was used to quantify the extent of PANI layering at the surface along with its oxidation and doping states. PANI incompletely covered the surface of the base microporous membranes for all the employed techniques. However, the extent of the layering increased with the polymerization time in a particular technique. The charge transport through the bulk membrane and charge transfer at the membrane/electrode interface were studied by electrochemical impedance spectroscopy (EIS). The data were analyzed using the equivalent circuit modeling technique. The modeling parameters revealed that PANI deposition at the surface enhanced the interfacial charge transfer but the process depended on the extent of the surface coverage of the membrane. In addition, the charge transport in the bulk membrane depended on the PANI intercalation level, which varied depending on the polymerization technique employed. In addition, the EIS of electrolyte-soaked membranes was also conducted to evaluate the effects of PANI deposition site on charge transport in the presence of an electrolyte. PANI layering at the pore walls of the base membrane from diaphragmatic polymerization in a two-compartment cell showed that charge transport processes were strongly affected by the interaction of the electrolyte with the PANI layer at the pore surface. This study successfully showed the dependence of charge transport mechanisms of PANI composite membranes on the PANI deposition site and extent of surface layering at the membrane surface.
Colloids and Surfaces B: Biointerfaces | 2013
Xudong Feng; Darrell Alec Patterson; Murat O. Balaban; Emma Anna Carolina Emanuelsson
An improved, simple, effective and superior protocol has been developed to immobilize amano lipase from Pseudomonas fluorescens on woolen cloth using polyethyleneimine (PEI) with glutaraldehyde (GA) cross-linking. The success of immobilization was confirmed by FTIR and confocal laser scanning microscope (CLSM), the latter proving that enzyme is well distributed across the wool fiber surfaces throughout the cloth. Woolen cloth therefore provides a large outer and inner fiber surface area for immobilization with minimal mass transfer resistances during immobilization. The optimal protocol (GA at 0.5% and pH 6, lipase solution pH 6) gave an enzyme load of 46.6 mg g(-1)dry cloth with expressed activity of 178.3 U, 46.8% immobilization yield and 30.2% retained activity. Zeta potential measurements showed that PEI significantly enhanced the positive charge on woolen cloth and shifted the isoelectric point to approximately 7. Therefore at a lipase solution pH of around 6, the wool-PEI and lipase are oppositely charged, leading to a maximal adsorption of lipase to the wool surface. The immobilized lipase also had a good stability and 81% of its original activity was maintained after 10 runs in tributyrin emulsion hydrolysis. This protocol provides a significant improvement in terms of retained activity and lipase stability compared to previous immobilizations on wool and opens up the possibility of using wool as a cheap and effective lipase support material for continuous lipase reactions/reactors and possibly enzyme enhanced woolen fabrics.
CrystEngComm | 2010
Chongwen Zou; Xiaodong Yan; Darrell Alec Patterson; Emma Anna Carolina Emanuelsson; J M Bian; Wei Gao
Amorphous V2O5 films dramatically transform to standing β-phase V2O5nanorods and flat lying nanoslices after annealing in O2 ambience within a narrow temperature range, showing a remarkable temperature-sensitive crystallization process.
Journal of Physical Chemistry B | 2009
Asif A. Qaiser; Margaret M. Hyland; Darrell Alec Patterson
Polyaniline (PANI) can be deposited either on the surface or in the bulk of a microporous membrane by various chemical oxidative polymerization techniques. Each technique has distinctive effects on the PANI site and extent of deposition on the base membrane. In the present study, mixed cellulose ester (ME) membranes with tortuous pore morphology were used as base membranes. The chemical oxidative polymerization techniques employed, included polymerization using an in-house-built two-compartment permeation cell. The resultant composite membranes have been characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR-ATR), and electrical conductivity measurements. The results showed that PANI was layered on the pore walls of the membrane using two-compartment permeation cell. Vapor-phase polymerization yielded a surface layer of PANI with little deposition in the bulk. A distorted PANI surface layer was achieved by solution-phase (dip) polymerization. Moreover, asymmetric PANI deposition within the membrane bulk was evidenced using two-compartment permeation cell. Composite membranes synthesized using two-compartment cell showed highest levels of conductivity (approximately 10(-2) S/cm) as compared to the membranes modified by single-step solution-phase polymerization. FTIR-ATR results indicated the extent of PANI coating and its oxidation state which was identified as doped emeraldine PANI, from all the employed techniques. Asymmetric deposition and extent have been explained in terms of the physical and chemical reaction steps involved in the heterogeneous aniline polymerization reactions in the two-compartment cell technique.
Membranes | 2016
Christopher John Davey; David J. Leak; Darrell Alec Patterson
Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.
Biotechnology Progress | 2014
Jing Dong An; Darrell Alec Patterson; Steve McNeil; Monwar Hossain
The aim of this research was to examine the effectiveness of an enzyme in enhancing the cleaning effectiveness of woolen fabric without addition of any detergent. As a model enzyme, lipase from Pseudomonas fluoresces was immobilized onto a woolen cloth using a unique protocol that involved: chlorination of the wool, adsorbing a polyethyleneimine (PEI) spacer, adsorbing, and cross‐linking with glutaraldehyde (GA) followed by adsorption of the lipase. It was determined that for this protocol, the immobilized activity was dependent on the GA solution pH and not on its concentration. The cloth exhibited excellent oily stain removal ability: after being stained with olive oil and stored for 1 day in air at room temperature, the oily stain could be easily removed by 0.05 M pH 8.5 Tris buffer without any detergent addition. This enhanced cleaning was stable also over a period of one month. The activity of the cloth (based on activity assay) dropped considerably over just 15 days storage in air. This therefore likely indicates that the enhanced cleaning seen over an extended storage period may not require as high an enzyme activity. The activity of the immobilized lipase was also very stable when stored under near ideal conditions: when the immobilized cloth was stored in 0.05 M Tris buffer (pH 8.5) for more than 80 days in a refrigerator, more than 80% of the lipase activity remained. Overall, results indicate that this immobilization protocol is a promising step towards producing a woolen fabric with enhanced cleaning properties.
Chemical Communications | 2007
Chayaporn Roengpithya; Darrell Alec Patterson; Andrew G. Livingston; Paul C. Taylor; Jacob L. Irwin; Mark R. Parrett
A continuous process with two separated reaction vessels provides a solution to the problems surrounding the combination of two catalysts in dynamic kinetic resolution reactions by retaining the biocatalyst in a lower temperature vessel with a microfiltration membrane and allowing the racemisation to occur efficiently in a higher temperature vessel.
IOP Conference Series: Materials Science and Engineering | 2011
Mark I. Jones; Haneen Barakat; Darrell Alec Patterson
This work describes the formation of Hydroxyaptite, Ca10(PO4)6(OH)2, from waste mussel shells from the New Zealand aquaculture industry. The raw shells are first calcined to produce lime (CaO) and then reacted in a purpose built reactor to form the Hydroxyapatite (HA) in a low temperature batch process. The calcination was studied in terms of the effects of temperature, heating rate, holding time, nitrogen flow rate and particle size. The crystals formed in the batch reactor were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Photoelectron Spectroscopy (XPS). Optimised conditions in the calcination stage resulted in powder with around 95% conversion to lime. The as-produced HA showed poor crystallinity and the presence of impurities, although both of these features were improved by a suitable post heat treatment process. The post treated material showed good crystallinity and was comparable to commercially produced material. Preliminary biocompatibility experiments showed that the HA stimulated cell growth and promoted mineralization. The production of HA from mussel shells in a room temperature, ambient pressure process is not only a sustainable use of waste material, but also from an industrial point of view the process has considerable potential for reducing costs associated with both starting materials and energy.
Chemical Communications | 2004
Nazlee Faisal Ghazali; Darrell Alec Patterson; Andrew G. Livingston
Organic solvent nanofiltration (OSN) was used to investigate the mechanism of chiral selectivity in diastereomeric salt formation of alpha-phenylethylamine with D-tartaric acid and di-p-toluoyl-D-tartaric acid as resolving agents; results indicate that for these systems chiral selectivity occurs only upon crystallisation and chiral interactions in solution were negligible.