Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren A. N. Cook is active.

Publication


Featured researches published by Darren A. N. Cook.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms

Nicholas R. Casewell; Simon C. Wagstaff; Wolfgang Wüster; Darren A. N. Cook; Fiona Bolton; Sarah I. King; Davinia Pla; Libia Sanz; Juan J. Calvete; Robert A. Harrison

Significance The toxic composition of snake venom varies between species. Such variation can have major medical implications for the treatment of human snakebite victims. Venom variation is largely attributed to differences in toxin-encoding genes present in the genome or venom gland of snakes. Here, we demonstrate that mechanisms affecting the transcription, translation, and posttranslational modification of toxins also significantly contribute to the diversity of venom protein composition. Venom variation observed between related snake species is therefore the result of a complex interaction between a variety of genetic and postgenomic factors acting on toxin genes. Ultimately, this variation results in significant differences in venom-induced pathology and lethality and can undermine the efficacy of antivenom therapies used to treat human snakebite victims. Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Autophagy regulates Wolbachia populations across diverse symbiotic associations.

Denis Voronin; Darren A. N. Cook; Andrew Steven; Mark J. Taylor

Wolbachia are widespread and abundant intracellular symbionts of arthropods and filarial nematodes. Their symbiotic relationships encompass obligate mutualism, commensalism, parasitism, and pathogenicity. A consequence of these diverse associations is that Wolbachia encounter a wide range of host cells and intracellular immune defense mechanisms of invertebrates, which they must evade to maintain their populations and spread to new hosts. Here we show that autophagy, a conserved intracellular defense mechanism and regulator of cell homeostasis, is a major immune recognition and regulatory process that determines the size of Wolbachia populations. The regulation of Wolbachia populations by autophagy occurs across all distinct symbiotic relationships and can be manipulated either chemically or genetically to modulate the Wolbachia population load. The recognition and activation of host autophagy is particularly apparent in rapidly replicating strains of Wolbachia found in somatic tissues of Drosophila and filarial nematodes. In filarial nematodes, which host a mutualistic association with Wolbachia, the use of antibiotics such as doxycycline to eliminate Wolbachia has emerged as a promising approach to their treatment and control. Here we show that the activation of host nematode autophagy reduces bacterial loads to the same magnitude as antibiotic therapy; thus we identify a bactericidal mode of action targeting Wolbachia that can be exploited for the development of chemotherapeutic agents against onchocerciasis, lymphatic filariasis, and heartworm.


Journal of Proteomics | 2011

Research strategies to improve snakebite treatment: Challenges and progress

Robert A. Harrison; Darren A. N. Cook; Camila Renjifo; Nicholas R. Casewell; Rachel B. Currier; Simon C. Wagstaff

Antivenom is an effective treatment of snakebite but, because of the complex interplay of fiscal, epidemiological, therapeutic efficacy and safety issues, the mortality of snakebite remains unacceptably high. Efficiently combating this high level of preventable death amongst the worlds most disadvantaged communities requires the globally-coordinated action of multiple intervention programmes. This is the overall objective of the Global Snakebite Initiative. This paper describes the challenges facing the research community to develop snakebite treatments that are more efficacious, safe and affordable than current therapy.


PLOS Neglected Tropical Diseases | 2010

Pre-clinical assays predict pan-African Echis viper efficacy for a species-specific antivenom.

Nicholas R. Casewell; Darren A. N. Cook; Simon C. Wagstaff; Abdulsalami Nasidi; Nandul Durfa; Wolfgang Wüster; Robert A. Harrison

Background Snakebite is a significant cause of death and disability in subsistent farming populations of sub-Saharan Africa. Antivenom is the most effective treatment of envenoming and is manufactured from IgG of venom-immunised horses/sheep but, because of complex fiscal reasons, there is a paucity of antivenom in sub-Saharan Africa. To address the plight of thousands of snakebite victims in savannah Nigeria, the EchiTAb Study Group organised the production, testing and delivery of antivenoms designed to treat envenoming by the most medically-important snakes in the region. The Echis saw-scaled vipers have a wide African distribution and medical importance. In an effort to maximise the clinical utility of scarce antivenom resources in Africa, we aimed to ascertain, at the pre-clinical level, to what extent the E. ocellatus-specific EchiTAbG antivenom, which was designed specifically for Nigeria, neutralised the lethal activity of venom from two other African species, E. pyramidum leakeyi and E. coloratus. Methodology/Principal Findings Despite apparently quite distinctive venom protein profiles, we observed extensive cross-species similarity in the immuno-reactivity profiles of Echis species-specific antisera. Using WHO standard pre-clinical in vivo tests, we determined that the monospecific EchiTAbG antivenom was as effective at neutralising the venom-induced lethal effects of E. pyramidum leakeyi and E. coloratus as it was against E. ocellatus venom. Under the restricted conditions of this assay, the antivenom was ineffective against the lethal effects of venom from the non-African Echis species, E. carinatus sochureki. Conclusions/Significance Using WHO-recommended pre-clinical tests we have demonstrated that the new anti-E. ocellatus monospecific antivenom EchiTAbG, developed in response to the considerable snakebite-induced mortality and morbidity in Nigeria, neutralised the lethal effects of venoms from Echis species representing each taxonomic group of this genus in Africa. This suggests that this monospecific antivenom has potential to treat envenoming by most, perhaps all, African Echis species.


Toxicon | 2010

Analysis of camelid IgG for antivenom development: Serological responses of venom-immunised camels to prepare either monospecific or polyspecific antivenoms for West Africa

Darren A. N. Cook; Timothy Owen; Simon C. Wagstaff; Joerg Kinne; Ulrich Wernery; Robert A. Harrison

Snake envenoming is a significant cause of mortality and morbidity in sub-Saharan Africa. The only effective treatment, antivenom, has been in short supply since the 1990s. Whilst the humanitarian response by some antivenom producers has significantly improved the situation, strategies to ensure the long term stability of antivenom supply are still necessary. We are investigating whether the potential safety and logistic advantages of camel IgG antivenom can be exploited to improve antivenom provision in many countries where snakebite is endemic. This study assessed the IgG titre, specificity and avidity of camels immunised with either individual venom or a mixture of venoms from the three most medically important snakes of West Africa, the saw-scale viper (Echis ocellatus), the puff adder (Bitis arietans) and the spitting cobra (Naja nigricollis). Seven of the eight immunised camels generated IgG titres and avidities comparable to, or exceeding, that of commercial equine and ovine antivenoms that are highly effective in envenomed patients. In this, the first of a series of reports on the potential utility of camelid IgG antivenom, we describe an immunisation protocol that induced potent, sustained serological response of very high antibody avidity. These attributes suggest, from an immunological perspective, that camel IgG antivenoms should be as efficacious as current equine and ovine antivenoms.


Toxicon | 2010

Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology.

Darren A. N. Cook; Timothy Owen; Simon C. Wagstaff; Joerg Kinne; Ulrich Wernery; Robert A. Harrison

Camelid IgG has been reported to be less immunogenic, less able to activate the complement cascade and more thermostable than IgG from other mammals, and has the ability to bind antigens that are unreactive with other mammalian IgGs. We are investigating whether these attributes of camelid IgG translate into antivenom with immunological and venom-neutralising efficacy advantages over conventional equine and ovine antivenoms. The objective of this study was to determine the preclinical venom-neutralising effectiveness of IgG from camels immunised with venoms, individually or in combination, of the saw-scaled viper, Echis ocellatus, the puff adder, Bitis arietans and the spitting cobra, Naja nigricollis - the most medically-important snake species in West Africa. Neutralisation of the pathological effects of venoms from E. ocellatus, B. arietans and N. nigricollis by IgG from the venom-immunised camels, or commercial antivenom, was compared using assays of venom lethality (ED(50)), haemorrhage (MHD) and coagulopathy (MCD). The E. ocellatus venom ED(50), MHD and MCD results of the E. ocellatus monospecific camel IgG antivenom were broadly equivalent to comparable ovine (EchiTAbG, MicroPharm Ltd, Wales) and equine (SAIMR Echis, South African Vaccine Producer, South Africa) antivenoms, although the equine antivenom required half the amount of IgG. The B. arietans monospecific camel IgG neutralised the lethal effects of B. arietans venom at one fourth the concentration of the SAIMR polyspecific antivenom (a monospecific B. arietans antivenom is not available). The N. nigricollis camel IgG antivenom was ineffective (at the maximum permitted dose, 100 mul) against the lethal effects of N. nigricollis venom. All the equine polyspecific antivenoms required more than 100 microl to be effective against this venom. The polyspecific camel IgG antivenom, prepared from five camels, was effective against the venom-induced effects of E. ocellatus but not against that of B. arietans and N. nigricollis venoms. No direct correlation was evident between either camel IgG relative avidity or titre and the effectiveness of venom neutralisation in preclinical assays.


Toxicon | 2010

Analysis of camelid IgG for antivenom development: immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment.

Darren A. N. Cook; Chamali L. Samarasekara; Simon C. Wagstaff; Joerg Kinne; Ulrich Wernery; Robert A. Harrison

Antivenom is the most effective treatment of snake envenoming and is manufactured from the IgG of venom-immunised horses and sheep. Camelids have a unique IgG structure which may account for the report that camel IgG is less immunogenic and less likely to activate complement than equine or ovine IgG. Camelid IgG therefore offers potential safety advantages over conventional IgGs used for antivenom manufacture. The reported thermostability of camelid IgG also holds promise in the inclusion of a relatively inexpensive anti-microbial heat step in antivenom manufacture. However, these potential benefits of camelid IgG would be much reduced if any one of the three camel IgG subclasses dominated, or under-performed, the serological response of camels to venom immunisation because of the prohibitive manufacturing costs of having to purify, or exclude, one or more IgG subclasses. This study compared the titre, antigen-specificity, relative avidity and ability to neutralise the haemorrhagic and coagulopathic effects of Echis ocellatus venom of each IgG subclass from the venom-immunised camels. The results demonstrated that no one IgG subclass consistently out-performed or under-performed the others in their immunoreactivity to venom proteins and ability to neutralise venom-induced pathologies. We concluded therefore that IgG taken from a pool of immunised camels could be processed into antivenom without requiring the implementation of expensive chromatographic separations to select, or indeed to exclude, a specific IgG subclass. The immunoreactivity of the heavy and light chain, IgG1 subclass, was markedly more vulnerable to extreme heat treatment than the heavy chain-only IgG2 and IgG3 subclasses.


Journal of Biomolecular Screening | 2015

Development and Validation of a High-Throughput Anti-Wolbachia Whole-Cell Screen: A Route to Macrofilaricidal Drugs against Onchocerciasis and Lymphatic Filariasis

Rachel H. Clare; Darren A. N. Cook; Kelly L. Johnston; Louise Ford; Stephen A. Ward; Mark J. Taylor

There is an urgent need to develop new, safe, and affordable macrofilaricidal drugs for onchocerciasis and lymphatic filariasis treatment and control. The Anti-Wolbachia Consortium (A·WOL) aims to provide a novel treatment with macrofilaricidal activity by targeting the essential bacterial symbiont Wolbachia. The consortium is currently screening a diverse range of compounds to find new chemical space to drive this drug discovery initiative and address this unmet demand. To increase the throughput and capacity of the A·WOL cell-based screen, we have developed a 384-well format assay using a high-content imaging system (Operetta) in conjunction with optimized Wolbachia growth dynamics in the C6/36 Aedes albopictus mosquito cell line. This assay uses texture analysis of cells stained with SYTO 11 as a direct measure of bacterial load. This validated assay has dramatically increased the capacity and throughput of the A·WOL compound library screening program 25-fold, enriching the number of new anti-Wolbachia hits identified for further development as potential macrofilaricides for onchocerciasis and lymphatic filariasis.


Parasites & Vectors | 2014

A murine macrofilaricide pre-clinical screening model for onchocerciasis and lymphatic filariasis

Alice Halliday; Ana F. Guimaraes; Hayley E. Tyrer; Haelly Metuge; Chounna Ndongmo Winston Patrick; Kengne-Ouafo Jonas Arnaud; Tayong Dizzle Bita Kwenti; George Forsbrook; Andrew Steven; Darren A. N. Cook; Peter Enyong; Samuel Wanji; Mark J. Taylor; Joseph D. Turner

BackgroundNew drugs effective against adult filariae (macrofilaricides) would accelerate the elimination of lymphatic filariasis and onchocerciasis. Anti-Onchocerca drug development is hampered by the lack of a facile model. We postulated that SCID mice could be developed as a fmacrofilaricide screening model.MethodsThe filaricides: albendazole (ABZ), diethylcarbamazine (DEC), flubendazole (FBZ), ivermectin (IVM) and the anti-Wolbachia macrofilaricide, minocycline (MIN) were tested in Brugia malayi (Bm)-parasitized BALB/c SCID mice vs vehicle control (VC). Responses were compared to BALB/c wild type (WT). Onchocerca ochengi male worms or onchocercomata were surgically implanted into BALB/c SCID, CB.17 SCID, BALB/c WT mice or Meriones gerbils. Survival was evaluated at 7–15 days. BALB/c SCID were tested to evaluate the responsiveness of pre-clinical macrofilaricides FBZ and rifapentine (RIFAP) against male Onchocerca.ResultsWT and SCID responded with >95% efficacy following ABZ or DEC treatments against Bm larvae (P < 0.0001). IVM was partially filaricidal against Bm larvae in WT and SCID (WT; 39.8%, P = 0.0356 and SCID; 56.7%, P = 0.026). SCID responded similarly to WT following IVM treatment of microfilaraemias (WT; 79%, P = 0.0194. SCID; 76%, P = 0.0473). FBZ induced a total macrofilaricidal response against adult Bm in WT and SCID (WT; P = 0.0067, SCID; P = 0.0071). MIN induced a >90% reduction in Bm Wolbachia burdens (P < 0.0001) and a blockade of microfilarial release (P = 0.0215) in SCID. Male Onchocerca survival was significantly higher in SCID vs WT mice, but not gerbils, after +15 days (60% vs 22% vs 39% P = 0.0475). Onchocercoma implants had engrafted into host tissues, with evidence of neovascularisation, after +7 days and yielded viable macro/microfilariae ex vivo. FBZ induced a macrofilaricidal effect in Onchocerca male implanted SCID at +5 weeks (FBZ; 1.67% vs VC; 43.81%, P = 0.0089). Wolbachia loads within male Onchocerca were reduced by 99% in implanted SCID receiving RIFAP for +2 weeks.ConclusionsWe have developed a `pan-filarial’ small animal research model that is sufficiently robust, with adequate capacity and throughput, to screen existing and future pre-clinical candidate macrofilaricides. Pilot data suggests a murine onchocercoma xenograft model is achievable.


Scientific Reports | 2017

Short-Course, High-Dose Rifampicin Achieves Wolbachia Depletion Predictive of Curative Outcomes in Preclinical Models of Lymphatic Filariasis and Onchocerciasis.

Ghaith Aljayyoussi; Hayley E. Tyrer; Louise Ford; Hanna Sjoberg; Nicolas Pionnier; David Waterhouse; Jill Davies; Joanne Gamble; Haelly Metuge; Darren A. N. Cook; Andrew Steven; Raman Sharma; Ana F. Guimaraes; Rachel H. Clare; Andrew Cassidy; Kelly L. Johnston; Laura Myhill; Laura Hayward; Samuel Wanji; Joseph D. Turner; Mark J. Taylor; Stephen A. Ward

Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18–24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.

Collaboration


Dive into the Darren A. N. Cook's collaboration.

Top Co-Authors

Avatar

Mark J. Taylor

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrew Steven

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Turner

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Ana F. Guimaraes

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Robert A. Harrison

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Simon C. Wagstaff

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Kelly L. Johnston

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Louise Ford

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Rachel H. Clare

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Ward

Liverpool School of Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge