Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren K. Griffin is active.

Publication


Featured researches published by Darren K. Griffin.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Science | 2014

Comparative genomics reveals insights into avian genome evolution and adaptation

Guojie Zhang; Cai Li; Qiye Li; Bo Li; Denis M. Larkin; Chul Hee Lee; Jay F. Storz; Agostinho Antunes; Matthew J. Greenwold; Robert W. Meredith; Qi Zhou; Luohao Xu; Zongji Wang; Pei Zhang; Haofu Hu; Wei Yang; Jiang Hu; Jin Xiao; Zhikai Yang; Yang Liu; Qiaolin Xie; Hao Yu; Jinmin Lian; Ping Wen; Fang Zhang; Hui Li; Yongli Zeng; Zijun Xiong; Shiping Liu; Zhiyong Huang

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.


Chromosome Research | 1999

Comparative Painting Reveals Strong Chromosome Homology Over 80 Million Years of Bird Evolution

Swathi Shetty; Darren K. Griffin; Jennifer A. Marshall Graves

Chickens and the great flightless emu belong to two distantly related orders of birds in the carinate and ratite subclasses that diverged at least 80 million years ago. In the first ZOO-FISH study between bird species, we hybridized single chromosome paints from the chicken (Gallus domesticus) onto the emu chromosomes. We found that the nine macrochromosomes show remarkable homology between the two species, indicating strong conservation of karyotype through evolution. One chicken macrochromosome (4) was represented by a macro- and a microchromosome in the emu, suggesting that microchromosomes and macrochromosomes are interconvertible. The chicken Z chromosome paint hybridized to the emu Z and most of the W, confirming that ratite sex chromosomes are largely homologous; the centromeric region of the W which hybridized weakly may represent the location of the sex determining gene(s).


Journal of Medical Genetics | 2010

Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes

Alan H. Handyside; Gary Harton; B.D. Mariani; Alan R. Thornhill; Nabeel A. Affara; Marie-Anne Shaw; Darren K. Griffin

The use of genome wide single nucleotide polymorphism (SNP) arrays for high resolution molecular cytogenetic analysis using a combination of quantitative and genotype analysis is well established. This study demonstrates that by Mendelian analysis of the SNP genotypes of the parents and a sibling or other appropriate family member to establish phase, it is possible to identify informative loci for each of the four parental haplotypes across each chromosome and map the inheritance of these haplotypes and the position of any crossovers in the proband. The resulting ‘karyomap’, unlike a karyotype, identifies the parental and grandparental origin of each chromosome and chromosome segment and is unique for every individual being defined by the independent segregation of parental chromosomes and the pattern of non-recombinant and recombinant chromosomes. Karyomapping, therefore, enables both genome wide linkage based analysis of inheritance and detection of chromosome imbalance where either both haplotypes from one parent are present (trisomy) or neither are present (monosomy/deletion). The study also demonstrates that karyomapping is possible at the single cell level following whole genome amplification and, without any prior patient or disease specific test development, provides a universal linkage based methodology for preimplantation genetic diagnosis readily available worldwide.


BMC Genomics | 2008

Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

Nicholas D Temperley; Sofia Berlin; Ian R. Paton; Darren K. Griffin; David W. Burt

BackgroundToll-like receptors (TLRs) perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs). Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution.ResultsThe chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago) and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively.ConclusionComparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates.


Nature Genetics | 2013

The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

Yinhua Huang; Yingrui Li; David W. Burt; Hualan Chen; Yong Zhang; Wubin Qian; Heebal Kim; Shangquan Gan; Yiqiang Zhao; Jianwen Li; Kang Yi; Huapeng Feng; Pengyang Zhu; Bo Li; Qiuyue Liu; Suan Fairley; Katharine E. Magor; Zhenlin Du; Xiaoxiang Hu; Laurie Goodman; Hakim Tafer; Alain Vignal; Taeheon Lee; Kyu-Won Kim; Zheya Sheng; Yang An; Steve Searle; Javier Herrero; M.A.M. Groenen; Richard P.M.A. Crooijmans

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the ducks defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.


Cytogenetic and Genome Research | 2007

The evolution of the avian genome as revealed by comparative molecular cytogenetics

Darren K. Griffin; Lindsay Robertson; Helen G. Tempest; Benjamin M. Skinner

Birds are characterised by feathers, flight, a small genome and a very distinctive karyotype. Despite the large numbers of chromosomes, the diploid count of 2n ≈ 80 has remained remarkably constant with 63% of birds where 2n = 74–86, 24% with 2n = 66–74 and extremes of 2n = 40 and 2n = 142. Of these, the most studied is the chicken (2n = 78), and molecular cytogenetic probes generated from this species have been used to further understand the evolution of the avian genome. The ancestral karyotype is, it appears, very similar to that of the chicken, with chicken chromosomes 1, 2, 3, 4q, 5, 6, 7, 8, 9, 4p and Z representing the ancestral avian chromosomes 1–10 + Z; chromosome 4 being the most ancient. Avian evolution occurred primarily in three stages: the divergence of the group represented by extant ratites (emu, ostrich etc.) from the rest; divergence of the Galloanserae (chicken, turkey, duck, goose etc.) – the most studied group; and divergence of the ‘land’ and ‘water’ higher birds. Other than sex chromosome differentiation in the first divergence there are no specific changes associated with any of these evolutionary milestones although certain families and orders have undergone multiple fusions (and some fissions), which has reduced their chromosome number; the Falconiformes are the best described. Most changes, overall, seem to involve chromosomes 1, 2, 4, 10 and Z where the Z changes are intrachromosomal; there are also some recurring (convergent) events. Of these, the most puzzling involves chromosomes 4 and 10, which appear to have undergone multiple fissions and/or fusions throughout evolution – three possible hypotheses are presented to explain the findings. We conclude by speculating as to the reasons for the strange behaviour of these chromosomes as well as the role of telomeres and nuclear organisation in avian evolution.


Fertility and Sterility | 2013

Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization.

Gary Harton; Santiago Munné; Mark Surrey; Jamie Grifo; B. Kaplan; D.H. McCulloh; Darren K. Griffin; Dagan Wells

OBJECTIVE To assess the relationship between maternal age, chromosome abnormality, implantation, and pregnancy loss. DESIGN Multicenter retrospective study. SETTING IVF centers in the United States. PATIENT(S) IVF patients undergoing chromosome screening. INTERVENTION(S) Embryo biopsy on day 3 or day 5/6 with preimplantation genetic diagnosis (PGD) by array comparative genomic hybridization. MAIN OUTCOME MEASURE(S) Aneuploidy, implantation, pregnancy, and loss rates. RESULT(S) Aneuploidy rates increased with maternal age from 53% to 93% for day 3 biopsies and from 32% to 85% for blastocyst biopsies. Implantation rates for euploid embryos for ages <35-42 years did not decrease after PGD: ranges 44%-32% for day 3 and 51%-40% for blastocyst. Ongoing pregnancy rates per transfer did not decrease for maternal ages <42 years after PGD with day 3 biopsy (48.5%-38.1%) or blastocyst biopsy (64.4%-54.5%). Patients >42 years old had implantation rates of 23.3% (day 3), 27.7% (day 5/6), and the pregnancy rate with day 3 biopsy was 9.3% and with day 5 biopsy 10.3%. CONCLUSION(S) Selective transfer of euploid embryos showed that implantation and pregnancy rates were not significantly different between reproductively younger and older patients up to age 42 years. Some patients who start an IVF cycle planning to have chromosome screening do not have euploid embryos available for transfer, a situation that increases with advancing maternal age. Mounting data suggests that the dramatic decline in IVF treatment success rates with female age is primarily caused by aneuploidy.


Genetics | 2004

Molecular Cytogenetic Definition of the Chicken Genome: The First Complete Avian Karyotype

Julio S. Masabanda; David W. Burt; Patricia C. M. O'Brien; Alain Vignal; Valerie Fillon; Philippa S. Walsh; Helen Cox; Helen G. Tempest; Jacqueline Smith; Felix A. Habermann; Yoichi Matsuda; Malcolm A. Ferguson-Smith; Richard P.M.A. Crooijmans; M.A.M. Groenen; Darren K. Griffin

Chicken genome mapping is important for a range of scientific disciplines. The ability to distinguish chromosomes of the chicken and other birds is thus a priority. Here we describe the molecular cytogenetic characterization of each chicken chromosome using chromosome painting and mapping of individual clones by FISH. Where possible, we have assigned the chromosomes to known linkage groups. We propose, on the basis of size, that the NOR chromosome is approximately the size of chromosome 22; however, we suggest that its original assignment of 16 should be retained. We also suggest a definitive chromosome classification system and propose that the probes developed here will find wide utility in the fields of developmental biology, DT40 studies, agriculture, vertebrate genome organization, and comparative mapping of avian species.


BMC Biology | 2010

Gene duplication and fragmentation in the zebra finch major histocompatibility complex

Christopher N. Balakrishnan; Robert Ekblom; Martin Völker; Helena Westerdahl; Ricardo M. Godinez; Holly Kotkiewicz; David W. Burt; Tina Graves; Darren K. Griffin; Wesley C. Warren; Scott V. Edwards

BackgroundDue to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines.ResultsThe zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes.ConclusionThe zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.

Collaboration


Dive into the Darren K. Griffin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen G. Tempest

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katie E Fowler

Canterbury Christ Church University

View shared research outputs
Top Co-Authors

Avatar

Marta Farré

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge