Darren M. Wells
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darren M. Wells.
Nature | 2012
Géraldine Brunoud; Darren M. Wells; Marina Oliva; Antoine Larrieu; Vincent Mirabet; Amy H. Burrow; Tom Beeckman; Stefan Kepinski; Jan Traas; Malcolm J. Bennett; Teva Vernoux
Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.
Molecular Systems Biology | 2014
Teva Vernoux; Géraldine Brunoud; Etienne Farcot; Valérie Morin; Hilde Van Den Daele; Jonathan Legrand; Marina Oliva; Pradeep Das; Antoine Larrieu; Darren M. Wells; Yann Guédon; Lynne Armitage; Franck Picard; Soizic Guyomarc'h; Coralie Cellier; Geraint Parry; Rachil Koumproglou; John H. Doonan; Mark Estelle; Christophe Godin; Stefan Kepinski; Malcolm J. Bennett; Lieven De Veylder; Jan Traas
The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large‐scale analysis of the Aux/IAA‐ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin‐based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA‐ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Leah R. Band; Darren M. Wells; Antoine Larrieu; Jianyong Sun; Alistair M. Middleton; Andrew P. French; Géraldine Brunoud; Ethel Mendocilla Sato; Michael Wilson; Benjamin Péret; Marina Oliva; Ranjan Swarup; Ilkka Sairanen; Geraint Parry; Karin Ljung; Tom Beeckman; Jonathan M. Garibaldi; Mark Estelle; Markus R. Owen; Kris Vissenberg; T. Charlie Hodgman; Tony P. Pridmore; John R. King; Teva Vernoux; Malcolm J. Bennett
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organs apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Nature Cell Biology | 2012
Benjamin Péret; Guowei Li; Jin Zhao; Leah R. Band; Ute Voß; Olivier Postaire; Doan Trung Luu; Olivier Da Ines; Ilda Casimiro; Mikaël Lucas; Darren M. Wells; Laure Lazzerini; Philippe Nacry; John R. King; Oliver E. Jensen; Anton R. Schäffner; Christophe Maurel; Malcolm J. Bennett
Aquaporins are membrane channels that facilitate water movement across cell membranes. In plants, aquaporins contribute to water relations. Here, we establish a new link between aquaporin-dependent tissue hydraulics and auxin-regulated root development in Arabidopsis thaliana. We report that most aquaporin genes are repressed during lateral root formation and by exogenous auxin treatment. Auxin reduces root hydraulic conductivity both at the cell and whole-organ levels. The highly expressed aquaporin PIP2;1 is progressively excluded from the site of the auxin response maximum in lateral root primordia (LRP) whilst being maintained at their base and underlying vascular tissues. Modelling predicts that the positive and negative perturbations of PIP2;1 expression alter water flow into LRP, thereby slowing lateral root emergence (LRE). Consistent with this mechanism, pip2;1 mutants and PIP2;1-overexpressing lines exhibit delayed LRE. We conclude that auxin promotes LRE by regulating the spatial and temporal distribution of aquaporin-dependent root tissue water transport.
The Plant Cell | 2014
Leah R. Band; Darren M. Wells; John A. Fozard; Teodor Ghetiu; Andrew P. French; Michael P. Pound; Michael Wilson; Lei Yu; Wenda Li; Hussein Hijazi; Jaesung Oh; Simon P. Pearce; Miguel A. Perez-Amador; Jeonga Yun; Eric M. Kramer; Jose M. Alonso; Christophe Godin; Teva Vernoux; T. Charlie Hodgman; Tony P. Pridmore; Ranjan Swarup; John R. King; Malcolm J. Bennett
This study presents a computational model for auxin transport based on actual root cell geometries and carrier subcellular localizations and tested using the DII-VENUS auxin sensor. The model shows that nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues. Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin’s shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.
Plant Physiology | 2013
Michael P. Pound; Andrew P. French; Jonathan A. Atkinson; Darren M. Wells; Malcolm J. Bennett; Tony P. Pridmore
RootNav is a novel image analysis tool that facilitates the accurate recovery of root system architectures from images. We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist’s satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav’s core representation.
Plant Physiology | 2014
Jonathan A. Atkinson; Amanda Rasmussen; Richard Traini; Ute Voß; Craig J. Sturrock; Sacha J. Mooney; Darren M. Wells; Malcolm J. Bennett
The diversity of postembryonic root forms and their functions add to our understanding of the genes, signals and mechanisms regulating lateral and adventitious root branching in the plant models Arabidopsis and rice. Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.
Molecular Systems Biology | 2014
Benjamin Péret; Alistair M. Middleton; Andrew P. French; Antoine Larrieu; Anthony Bishopp; Maria Fransiska Njo; Darren M. Wells; Silvana Porco; Nathan Mellor; Leah R. Band; Ilda Casimiro; Juergen Kleine-Vehn; Steffen Vanneste; Ilkka Sairanen; Romain Mallet; Göran Sandberg; Karin Ljung; Tom Beeckman; Eva Benková; Jiri Friml; Eric M. Kramer; John R. King; Ive De Smet; Tony P. Pridmore; Markus R. Owen; Malcolm J. Bennett
In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell‐wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three‐dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required—later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.
Journal of Experimental Botany | 2015
Jonathan A. Atkinson; Luzie U. Wingen; Marcus Griffiths; Michael P. Pound; Oorbessy Gaju; M. John Foulkes; Jacques Le Gouis; Simon Griffiths; Malcolm J. Bennett; Julie King; Darren M. Wells
Highlight A phenotyping pipeline was used to quantify seedling root architectural traits in a wheat double haploid mapping population. QTL analyses revealed a potential major effect gene regulating seedling root vigour/growth.
The Plant Cell | 2012
Michael P. Pound; Andrew P. French; Darren M. Wells; Malcolm J. Bennett; Tony P. Pridmore
This article presents a tool to aid researchers in the analysis of confocal images. Tissue-scale structure is used to aid the segmentation of any number of cells. Additional techniques are described that can quantify the fluorescence of nuclear reporters, determine membrane protein polarity, and take many additional biologically relevant measurements. It is increasingly important in life sciences that many cell-scale and tissue-scale measurements are quantified from confocal microscope images. However, extracting and analyzing large-scale confocal image data sets represents a major bottleneck for researchers. To aid this process, CellSeT software has been developed, which utilizes tissue-scale structure to help segment individual cells. We provide examples of how the CellSeT software can be used to quantify fluorescence of hormone-responsive nuclear reporters, determine membrane protein polarity, extract cell and tissue geometry for use in later modeling, and take many additional biologically relevant measures using an extensible plug-in toolset. Application of CellSeT promises to remove subjectivity from the resulting data sets and facilitate higher-throughput, quantitative approaches to plant cell research.