Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren P. Martin is active.

Publication


Featured researches published by Darren P. Martin.


Bioinformatics | 2000

RDP: detection of recombination amongst aligned sequences

Darren P. Martin; Edward P. Rybicki

SUMMARY Recombination Detection Program (RDP) is a program that applies a pairwise scanning approach to the detection of recombination amongst a group of aligned DNA sequences. The software runs under Windows95 and combines highly automated screening of large numbers of sequences with a highly interactive interface for examining the results of the analyses.


Virus Evolution | 2015

RDP4: Detection and analysis of recombination patterns in virus genomes

Darren P. Martin; Ben Murrell; Michael Golden; Arjun Khoosal; Brejnev Muhire

RDP4 is the latest version of recombination detection program (RDP), a Windows computer program that implements an extensive array of methods for detecting and visualising recombination in, and stripping evidence of recombination from, virus genome sequence alignments. RDP4 is capable of analysing twice as many sequences (up to 2,500) that are up to three times longer (up to 10 Mb) than those that could be analysed by older versions of the program. RDP4 is therefore also applicable to the analysis of bacterial full-genome sequence datasets. Other novelties in RDP4 include (1) the capacity to differentiate between recombination and genome segment reassortment, (2) the estimation of recombination breakpoint confidence intervals, (3) a variety of ‘recombination aware’ phylogenetic tree construction and comparison tools, (4) new matrix-based visualisation tools for examining both individual recombination events and the overall phylogenetic impacts of multiple recombination events and (5) new tests to detect the influences of gene arrangements, encoded protein structure, nucleic acid secondary structure, nucleotide composition, and nucleotide diversity on recombination breakpoint patterns. The key feature of RDP4 that differentiates it from other recombination detection tools is its flexibility. It can be run either in fully automated mode from the command line interface or with a graphically rich user interface that enables detailed exploration of both individual recombination events and overall recombination patterns.


PLOS ONE | 2014

SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.

Brejnev Muhire; Arvind Varsani; Darren P. Martin

The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms).


Journal of Virology | 2006

Recombination Patterns in Aphthoviruses Mirror Those Found in Other Picornaviruses

Livio Heath; Eric van der Walt; Arvind Varsani; Darren P. Martin

ABSTRACT Foot-and-mouth disease virus (FMDV) is thought to evolve largely through genetic drift driven by the inherently error-prone nature of its RNA polymerase. There is, however, increasing evidence that recombination is an important mechanism in the evolution of these and other related picornoviruses. Here, we use an extensive set of recombination detection methods to identify 86 unique potential recombination events among 125 publicly available FMDV complete genome sequences. The large number of events detected between members of different serotypes suggests that horizontal flow of sequences among the serotypes is relatively common and does not incur severe fitness costs. Interestingly, the distribution of recombination breakpoints was found to be largely nonrandom. Whereas there are clear breakpoint cold spots within the structural genes, two statistically significant hot spots precisely separate these from the nonstructural genes. Very similar breakpoint distributions were found for other picornovirus species in the genera Enterovirus and Teschovirus. Our results suggest that genome regions encoding the structural proteins of both FMDV and other picornaviruses are functionally interchangeable modules, supporting recent proposals that the structural and nonstructural coding regions of the picornaviruses are evolving largely independently of one another.


Bioinformatics | 2006

Robust inference of positive selection from recombining coding sequences

Konrad Scheffler; Darren P. Martin; Cathal Seoighe

MOTIVATION Accurate detection of positive Darwinian selection can provide important insights to researchers investigating the evolution of pathogens. However, many pathogens (particularly viruses) undergo frequent recombination and the phylogenetic methods commonly applied to detect positive selection have been shown to give misleading results when applied to recombining sequences. We propose a method that makes maximum likelihood inference of positive selection robust to the presence of recombination. This is achieved by allowing tree topologies and branch lengths to change across detected recombination breakpoints. Further improvements are obtained by allowing synonymous substitution rates to vary across sites. RESULTS Using simulation we show that, even for extreme cases where recombination causes standard methods to reach false positive rates >90%, the proposed method decreases the false positive rate to acceptable levels while retaining high power. We applied the method to two HIV-1 datasets for which we have previously found that inference of positive selection is invalid owing to high rates of recombination. In one of these (env gene) we still detected positive selection using the proposed method, while in the other (gag gene) we found no significant evidence of positive selection. AVAILABILITY A HyPhy batch language implementation of the proposed methods and the HIV-1 datasets analysed are available at http://www.cbio.uct.ac.za/pub_support/bioinf06. The HyPhy package is available at http://www.hyphy.org, and it is planned that the proposed methods will be included in the next distribution. RDP2 is available at http://darwin.uvigo.es/rdp/rdp.html


Journal of Virology | 2009

Widely Conserved Recombination Patterns among Single-Stranded DNA Viruses

Pierre Lefeuvre; Jean-Michel Lett; Arvind Varsani; Darren P. Martin

ABSTRACT The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.


PLOS Pathogens | 2010

The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World

Pierre Lefeuvre; Darren P. Martin; Gordon William Harkins; Philippe Lemey; Alistair J. A. Gray; Sandra Meredith; Francisco M. Lakay; Adérito L. Monjane; Jean-Michel Lett; Arvind Varsani; Jahangir Heydarnejad

The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCVs diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905–1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements.


Archives of Virology | 2014

Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus

Arvind Varsani; Jesús Navas-Castillo; Enrique Moriones; Cecilia Hernández-Zepeda; A. M. Idris; Judith K. Brown; F. Murilo Zerbini; Darren P. Martin

Abstract The family Geminiviridae includes plant-infecting circular single-stranded DNA viruses that have geminate particle morphology. Members of this family infect both monocotyledonous and dicotyledonous plants and have a nearly global distribution. With the advent of new molecular tools and low-cost sequencing, there has been a significant increase in the discovery of new geminiviruses in various cultivated and non-cultivated plants. In this communication, we highlight the establishment of three new genera (Becurtovirus, Eragrovirus and Turncurtovirus) to accommodate various recently discovered geminiviruses that are highly divergent and, in some cases, have unique genome architectures. The genus Becurtovirus has two viral species, Beet curly top Iran virus (28 isolates; leafhopper vector Circulifer haematoceps) and Spinach curly top Arizona virus (1 isolate; unknown vector), whereas the genera Eragrovirus and Turncurtovirus each have a single assigned species: Eragrostis curvula streak virus (6 isolates; unknown vector) and Turnip curly top virus (20 isolates; leafhopper vector Circulifer haematoceps), respectively. Based on analysis of all of the genome sequences available in public databases for each of the three new genera, we provide guidelines and protocols for species and strain classification within these three new genera.


PLOS Pathogens | 2008

Transmission of HIV-1 CTL Escape Variants Provides HLA-Mismatched Recipients with a Survival Advantage

Denis R. Chopera; Zenda L. Woodman; Koleka Mlisana; Mandla Mlotshwa; Darren P. Martin; Cathal Seoighe; Florette K. Treurnicht; Debra Assis de Rosa; Winston Hide; Salim Safurdeen. Abdool Karim; Clive M. Gray; Carolyn Williamson

One of the most important genetic factors known to affect the rate of disease progression in HIV-infected individuals is the genotype at the Class I Human Leukocyte Antigen (HLA) locus, which determines the HIV peptides targeted by cytotoxic T-lymphocytes (CTLs). Individuals with HLA-B*57 or B*5801 alleles, for example, target functionally important parts of the Gag protein. Mutants that escape these CTL responses may have lower fitness than the wild-type and can be associated with slower disease progression. Transmission of the escape variant to individuals without these HLA alleles is associated with rapid reversion to wild-type. However, the question of whether infection with an escape mutant offers an advantage to newly infected hosts has not been addressed. Here we investigate the relationship between the genotypes of transmitted viruses and prognostic markers of disease progression and show that infection with HLA-B*57/B*5801 escape mutants is associated with lower viral load and higher CD4+ counts.


PLOS Pathogens | 2010

Generation of Genic Diversity among Streptococcus pneumoniae Strains via Horizontal Gene Transfer during a Chronic Polyclonal Pediatric Infection

N. Luisa Hiller; Azad Ahmed; Evan Powell; Darren P. Martin; Rory A. Eutsey; Joshua P. Earl; Benjamin Janto; Robert Boissy; Justin S. Hogg; Karen A. Barbadora; Rangarajan Sampath; Shaun Lonergan; J. Christopher Post; Fen Z. Hu; Garth D. Ehrlich

Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.

Collaboration


Dive into the Darren P. Martin's collaboration.

Top Co-Authors

Avatar

Arvind Varsani

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Lefeuvre

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob W. Briddon

National Institute for Biotechnology and Genetic Engineering

View shared research outputs
Researchain Logo
Decentralizing Knowledge