Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darren Smith is active.

Publication


Featured researches published by Darren Smith.


Infection and Immunity | 2003

Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens.

Heather E. Allison; Martin J. Sergeant; Chloe E. James; Jon R. Saunders; Darren Smith; Richard J. Sharp; Trevor S. Marks; Alan J. McCarthy

ABSTRACT The pathogenicity of Shiga-like toxin (stx)-producing Escherichia coli (STEC), notably serotype O157, the causative agent of hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura, is based partly on the presence of genes (stx1 and/or stx2) that are known to be carried on temperate lambdoid bacteriophages. Stx phages were isolated from different STEC strains and found to have genome sizes in the range of 48 to 62 kb and to carry either stx1 or stx2 genes. Restriction fragment length polymorphism patterns and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles were relatively uninformative, but the phages could be differentiated according to their immunity profiles. Furthermore, these were sufficiently sensitive to enable the identification and differentiation of two different phages, both carrying the genes for Stx2 and originating from the same STEC host strain. The immunity profiles of the different Stx phages did not conform to the model established for bacteriophage lambda, in that the pattern of individual Stx phage infection of various lysogens was neither expected nor predicted. Unexpected differences were also observed among Stx phages in their relative lytic productivity within a single host. Two antibiotic resistance markers were used to tag a recombinant phage in which the stx genes were inactivated, enabling the first reported observation of the simultaneous infection of a single host with two genetically identical Stx phages. The data demonstrate that, although Stx phages are members of the lambdoid family, their replication and infection control strategies are not necessarily identical to the archetypical bacteriophage λ, and this could be responsible for the widespread occurrence of stx genes across a diverse range of E. coli serotypes.


BMC Genomics | 2012

Comparative genomics of Shiga toxin encoding bacteriophages

Darren Smith; David J. Rooks; Paul C. M. Fogg; Alistair C. Darby; Nicholas R. Thomson; Alan J. McCarthy; Heather E. Allison

BackgroundStx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages.ResultsThe genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system.ConclusionsThe data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.


Genes | 2010

Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria and Bacteroidetes

Jennifer L. Edwards; Darren Smith; John Connolly; James E. McDonald; Michael J. Cox; Ian Joint; Clive Edwards; Alan J. McCarthy

Polysaccharides are an important source of organic carbon in the marine environment, degradation of the insoluble, globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes, degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers, functional genes,, showed that the community was dominated by members of the Gammaproteobacteria, Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize, degrade cellulose in the marine environment, to evaluate the glycoside hydrolase (cellulase, chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques.


Journal of Bacteriology | 2007

Short-Tailed Stx Phages Exploit the Conserved YaeT Protein To Disseminate Shiga Toxin Genes among Enterobacteria

Darren Smith; Chloe E. James; Martin J. Sergeant; Yan Yaxian; Jon R. Saunders; Alan J. McCarthy; Heather E. Allison

Infection of Escherichia coli by Shiga toxin-encoding bacteriophages (Stx phages) was the pivotal event in the evolution of the deadly Shiga toxin-encoding E. coli (STEC), of which serotype O157:H7 is the most notorious. The number of different bacterial species and strains reported to produce Shiga toxin is now more than 500, since the first reported STEC infection outbreak in 1982. Clearly, Stx phages are spreading rapidly, but the underlying mechanism for this dissemination has not been explained. Here we show that an essential and highly conserved gene product, YaeT, which has an essential role in the insertion of proteins in the gram-negative bacterial outer membrane, is the surface molecule recognized by the majority (ca. 70%) of Stx phages via conserved tail spike proteins associated with a short-tailed morphology. The yaeT gene was initially identified through complementation, and its role was confirmed in phage binding assays with and without anti-YaeT antiserum. Heterologous cloning of E. coli yaeT to enable Stx phage adsorption to Erwinia carotovora and the phage adsorption patterns of bacterial species possessing natural yaeT variants further supported this conclusion. The use of an essential and highly conserved protein by the majority of Stx phages is a strategy that has enabled and promoted the rapid spread of shigatoxigenic potential throughout multiple E. coli serogroups and related bacterial species. Infection of commensal bacteria in the mammalian gut has been shown to amplify Shiga toxin production in vivo, and the data from this study provide a platform for the development of a therapeutic strategy to limit this YaeT-mediated infection of the commensal flora.


Advanced Healthcare Materials | 2014

Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation.

Tom O. McDonald; Marco Giardiello; Philip Martin; Marco Siccardi; Neill J. Liptrott; Darren Smith; Phill Roberts; Paul Curley; Alessandro Schipani; Saye Khoo; James Long; Alison Jayne Foster; Steven Paul Rannard; Andrew Owen

Nanomedicine strategies have produced many commercial products. However, no orally dosed HIV nanomedicines are available clinically to patients. Although nanosuspensions of drug particles have demonstrated many benefits, experimentally achieving >25 wt% of drug relative to stabilizers is highly challenging. In this study, the emulsion-templated freeze-drying technique for nanoparticles formation is applied for the first time to optimize a nanodispersion of the leading non-nucleoside reverse transcriptase inhibitor efavirenz, using clinically acceptable polymers and surfactants. Dry monoliths containing solid drug nanoparticles with extremely high drug loading (70 wt% relative to polymer and surfactant stabilizers) are stable for several months and reconstitute in aqueous media to provide nanodispersions with z-average diameters of 300 nm. The solid drug nanoparticles exhibit reduced cytoxicity and increased in vitro transport through model gut epithelium. In vivo studies confirm bioavailability benefits with an approximately four-fold higher pharmacokinetic exposure after oral administration to rodents, and predictive modeling suggests dose reduction with the new formulation may be possible.


Antimicrobial Agents and Chemotherapy | 2011

Raltegravir Is a Substrate for SLC22A6: a Putative Mechanism for the Interaction between Raltegravir and Tenofovir

Darren M. Moss; Wai San Kwan; Neill J. Liptrott; Darren Smith; Marco Siccardi; Saye Khoo; David Back; Andrew Owen

ABSTRACT The identification of transporters of the HIV integrase inhibitor raltegravir could be a factor in an understanding of the pharmacokinetic-pharmacodynamic relationship and reported drug interactions of raltegravir. Here we determined whether raltegravir was a substrate for ABCB1 or the influx transporters SLCO1A2, SLCO1B1, SLCO1B3, SLC22A1, SLC22A6, SLC10A1, SLC15A1, and SLC15A2. Raltegravir transport by ABCB1 was studied with CEM, CEMVBL100, and Caco-2 cells. Transport by uptake transporters was assessed by using a Xenopus laevis oocyte expression system, peripheral blood mononuclear cells, and primary renal cells. The kinetics of raltegravir transport and competition between raltegravir and tenofovir were also investigated using SLC22A6-expressing oocytes. Raltegravir was confirmed to be an ABCB1 substrate in CEM, CEMVBL100, and Caco-2 cells. Raltegravir was also transported by SLC22A6 and SLC15A1 in oocyte expression systems but not by other transporters studied. The Km and V max for SLC22A6 transport were 150 μM and 36 pmol/oocyte/h, respectively. Tenofovir and raltegravir competed for SLC22A6 transport in a concentration-dependent manner. Raltegravir inhibited 1 μM tenofovir with a 50% inhibitory concentration (IC50) of 14.0 μM, and tenofovir inhibited 1 μM raltegravir with an IC50 of 27.3 μM. Raltegravir concentrations were not altered by transporter inhibitors in peripheral blood mononuclear cells or primary renal cells. Raltegravir is a substrate for SLC22A6 and SLC15A1 in the oocyte expression system. However, transport was limited compared to endogenous controls, and these transporters are unlikely to have a great impact on raltegravir pharmacokinetics.


BMC Microbiology | 2014

Polymicrobial airway bacterial communities in adult bronchiectasis patients.

Paul Purcell; Hannah Jary; Audrey Perry; John D. Perry; Christopher J. Stewart; Andrew Nelson; Clare Lanyon; Darren Smith; Stephen P. Cummings; Anthony De Soyza

BackgroundChronic airway infection contributes to the underlying pathogenesis of non-cystic fibrosis bronchiectasis (NCFBr). In contrast to other chronic airway infections, associated with COPD and CF bronchiectasis, where polymicrobial communities have been implicated in lung damage due to the vicious circle of recurrent bacterial infections and inflammation, there is sparse information on the composition of bacterial communities in NCFBr. Seventy consecutive patients were recruited from an outpatient adult NCFBr clinic. Bacterial communities in sputum samples were analysed by culture and pyrosequencing approaches. Bacterial sequences were analysed using partial least square discrimination analyses to investigate trends in community composition and identify those taxa that contribute most to community variation.ResultsThe lower airway in NCFBr is dominated by three bacterial taxa Pasteurellaceae, Streptococcaceae and Pseudomonadaceae. Moreover, the bacterial community is much more diverse than indicated by culture and contains significant numbers of other genera including anaerobic Prevotellaceae, Veillonellaceae and Actinomycetaceae. We found particular taxa are correlated with different clinical states, 27 taxa were associated with acute exacerbations, whereas 11 taxa correlated with stable clinical states. We were unable to demonstrate a significant effect of antibiotic therapy, gender, or lung function on the diversity of the bacterial community. However, presence of clinically significant culturable taxa; particularly Pseudomonas aeruginosa and Haemophilus influenzae correlated with a significant change in the diversity of the bacterial community in the lung.ConclusionsWe have demonstrated that acute exacerbations, the frequency of exacerbation and episodes of clinical stability are correlated, in some patients, with a significantly different bacterial community structure, that are associated with a presence of particular taxa in the NCFBr lung. Moreover, there appears to be an inverse relationship between the abundance of P. aeruginosa and that of of H. influenzae within the NCFBr lung bacterial community. This interaction requires further exploration.


Applied and Environmental Microbiology | 2010

High-Throughput Method for Rapid Induction of Prophages from Lysogens and Its Application in the Study of Shiga Toxin-Encoding Escherichia coli Strains

James E. McDonald; Darren Smith; Paul C. M. Fogg; Alan J. McCarthy; Heather E. Allison

ABSTRACT A high-throughput 96-well plate-based method for the rapid induction of endogenous prophages from individual bacterial strains was developed. The detection of endogenous prophages was achieved by the filtration of the culture liquor following norfloxacin induction and subsequent PCRs targeting bacteriophage-carried gene markers. The induction method was tested on 188 putative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains and demonstrated the ability to detect both lambdoid and stx-carrying bacteriophages in strains for which plaques were not observed via plaque assay. Lambdoid bacteriophages were detected in 37% of the induced phage preparations via amplification of the Q gene, and Stx1- and Stx2-encoding phages were detected in 2 and 14% of the strains, respectively. The method therefore provided greater sensitivity for the detection of Stx and other lambdoid bacteriophage populations carried by STEC strains than that for the established method of plaque assay using bacterial indicator strains, enabling, for the first time, large-scale bacteriophage population and diversity studies.


Applied and Environmental Microbiology | 2007

Multilocus Characterization Scheme for Shiga Toxin-Encoding Bacteriophages

Darren Smith; Brian Wareing; Paul C. M. Fogg; Laura Riley; Matthew Spencer; Michael J. Cox; Jon R. Saunders; Alan J. McCarthy; Heather E. Allison

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens whose ability to produce Shiga toxin (Stx) is due to integration of Stx-encoding lambdoid bacteriophages. These Stx phages are both genetically and morphologically heterogeneous, and here we report the design and validation of a PCR-based multilocus typing scheme. PCR primer sets were designed for database variants of a range of key lambdoid bacteriophage genes and applied to control phages and 70 stx+ phage preparations induced from a collection of STEC isolates. The genetic diversity residing within these populations could be described, and observations were made on the heterogeneity of individual gene targets, including the unexpected predominance of short-tailed phages with a highly conserved tail spike protein gene. Purified Stx phages can be profiled using this scheme, and the lambdoid phage-borne genes in induced STEC preparations can be identified as well as those residing in the noninducible prophage complement. The ultimate goal is to enable robust and realistically applicable epidemiological studies of Stx phages and their traits. The impact of Stx phage on STEC epidemiology is currently unknown.


Nature Communications | 2016

Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies

Marco Giardiello; Neill J. Liptrott; Tom O. McDonald; Darren M. Moss; Marco Siccardi; Phil Martin; Darren Smith; Rohan Gurjar; Steve P. Rannard; Andrew Owen

Considerable scope exists to vary the physical and chemical properties of nanoparticles, with subsequent impact on biological interactions; however, no accelerated process to access large nanoparticle material space is currently available, hampering the development of new nanomedicines. In particular, no clinically available nanotherapies exist for HIV populations and conventional paediatric HIV medicines are poorly available; one current paediatric formulation utilizes high ethanol concentrations to solubilize lopinavir, a poorly soluble antiretroviral. Here we apply accelerated nanomedicine discovery to generate a potential aqueous paediatric HIV nanotherapy, with clinical translation and regulatory approval for human evaluation. Our rapid small-scale screening approach yields large libraries of solid drug nanoparticles (160 individual components) targeting oral dose. Screening uses 1 mg of drug compound per library member and iterative pharmacological and chemical evaluation establishes potential candidates for progression through to clinical manufacture. The wide applicability of our strategy has implications for multiple therapy development programmes.

Collaboration


Dive into the Darren Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Owen

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge