Darrin Taylor
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darrin Taylor.
Nature Methods | 2008
Nicole Cloonan; Alistair R. R. Forrest; Gabriel Kolle; Brooke Gardiner; Geoffrey J. Faulkner; Mellissa K Brown; Darrin Taylor; Anita L Steptoe; Shivangi Wani; Graeme Bethel; Alan Robertson; Andrew C. Perkins; Stephen J. Bruce; Clarence Lee; Swati Ranade; Heather E. Peckham; Jonathan M. Manning; Kevin McKernan; Sean M. Grimmond
We developed a massive-scale RNA sequencing protocol, short quantitative random RNA libraries or SQRL, to survey the complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. This method generates directional, random-primed, linear cDNA libraries that are optimized for next-generation short-tag sequencing. We surveyed the poly(A)+ transcriptomes of undifferentiated mouse embryonic stem cells (ESCs) and embryoid bodies (EBs) at an unprecedented depth (10 Gb), using the Applied Biosystems SOLiD technology. These libraries capture the genomic landscape of expression, state-specific expression, single-nucleotide polymorphisms (SNPs), the transcriptional activity of repeat elements, and both known and new alternative splicing events. We investigated the impact of transcriptional complexity on current models of key signaling pathways controlling ESC pluripotency and differentiation, highlighting how SQRL can be used to characterize transcriptome content and dynamics in a quantitative and reproducible manner, and suggesting that our understanding of transcriptional complexity is far from complete.
Nature | 2015
Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell
Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
Nature | 2015
Ann-Marie Patch; Elizabeth L. Christie; Dariush Etemadmoghadam; Dale W. Garsed; Joshy George; Sian Fereday; Katia Nones; Prue Cowin; Kathryn Alsop; Peter Bailey; Karin S. Kassahn; Felicity Newell; Michael Quinn; Stephen Kazakoff; Kelly Quek; Charlotte Wilhelm-Benartzi; Ed Curry; Huei San Leong; Anne Hamilton; Linda Mileshkin; George Au-Yeung; Catherine Kennedy; Jillian Hung; Yoke-Eng Chiew; Paul Harnett; Michael Friedlander; Jan Pyman; Stephen M. Cordner; Patricia O’Brien; Jodie Leditschke
Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
Developmental Biology | 2009
Kylie Georgas; Bree Rumballe; M. Todd Valerius; Han Sheng Chiu; Rathi D. Thiagarajan; Emmanuelle Lesieur; Bruce J. Aronow; Eric W. Brunskill; Alexander N. Combes; Dave Tang; Darrin Taylor; Sean M. Grimmond; S. Steven Potter; Andrew P. McMahon; Melissa H. Little
While nephron formation is known to be initiated by a mesenchyme-to-epithelial transition of the cap mesenchyme to form a renal vesicle (RV), the subsequent patterning of the nephron and fusion with the ureteric component of the kidney to form a patent contiguous uriniferous tubule has not been fully characterized. Using dual section in situ hybridization (SISH)/immunohistochemistry (IHC) we have revealed distinct distal/proximal patterning of Notch, BMP and Wnt pathway components within the RV stage nephron. Quantitation of mitoses and Cyclin D1 expression indicated that cell proliferation was higher in the distal RV, reflecting the differential developmental programs of the proximal and distal populations. A small number of RV genes were also expressed in the early connecting segment of the nephron. Dual ISH/IHC combined with serial section immunofluorescence and 3D reconstruction revealed that fusion occurs between the late RV and adjacent ureteric tip via a process that involves loss of the intervening ureteric epithelial basement membrane and insertion of cells expressing RV markers into the ureteric tip. Using Six2-eGFPCre x R26R-lacZ mice, we demonstrate that these cells are derived from the cap mesenchyme and not the ureteric epithelium. Hence, both nephron patterning and patency are evident at the late renal vesicle stage.
Vaccine | 1999
Allan Saul; Gregor Lawrence; Anne Smillie; Christine M. Rzepczyk; Carol Reed; Darrin Taylor; Karen Anderson; Anthony Stowers; Richard Kemp; Anthony Allworth; Robin F. Anders; Graham V. Brown; David Pye; Peter Schoofs; David O. Irving; Shanny L. Dyer; Graeme C. Woodrow; William R.S. Briggs; Rosemaria Reber; Dieter Stürchler
Two phase I vaccine trials were conducted to test the immunogenicity and safety of a vaccine containing three recombinant malaria antigens from the asexual stage of Plasmodium falciparum. The three antigens are a fragment of MSP1 (190LCS.T3); MSP2 and a portion of RESA and were formulated in Montanide ISA720 adjuvant. These trials investigated the dose response of each antigen for eliciting both antibody and T-cell responses and the immunogenicity of a mixture of the antigens compared with the antigens injected separately. All three antigens elicited both antibody and T-cell responses. Strong T-cell responses were observed with 190LCS.T3 and RESA with stimulation indices exceeding 100 for peripheral blood leucocytes in some individuals. The antibody responses were generally weak. The human antibody responses observed with MSP2 in Montanide ISA720 were not significantly different from those obtained in an earlier trial which used MSP2 with alum as the adjuvant. No antigenic competition was observed: volunteers receiving a mixture of antigens had similar responses to those receiving the three antigens at separate sites. Tenderness and pain at the injection site were common over the first few days following immunization. In some volunteers, especially those receiving the highest doses tested, there was a delayed reaction at the injection site with pain and swelling occurring approximately 10 days after injection.
Vaccine | 2000
Gregor Lawrence; Qin Cheng; Carol Reed; Darrin Taylor; Anthony Stowers; Nicole Cloonan; Christine M. Rzepczyk; Anne Smillie; Karen Anderson; David J. Pombo; Anthony Allworth; Damon P. Eisen; Robin F. Anders; Allan Saul
A placebo controlled, randomised, double blind trial was conducted in human volunteers to test a mixture of three recombinant Plasmodium falciparum blood stage antigens for its ability to reduce the initial growth rates of parasites. The vaccine contained recombinant MSP2 (3D7 allele), a portion of MSP1 (190LCS.T3) and part of the RESA antigen (C terminal 771 amino acids) in the Montanide ISA 720 adjuvant (SEPPIC). Twelve volunteers received two doses of the vaccine, 6 weeks apart. The five participants in the placebo group received an equivalent volume of the adjuvant emulsion using the same schedule. Antibody responses were low, as has been reported in earlier studies with this combination, while T cell responses were stronger. All the volunteers were challenged with approximately 140 ring infected red cells of the 3D7 cloned line, 4 weeks after the second dose. Parasitaemia was determined once daily from day 4 using a sensitive and quantitative PCR assay. All the volunteers were infected and were treated on day 8, before any developed symptoms. There was no significant difference in initial parasite growth rates between the verum and placebo groups, nor was there any significant correlation between parasite growth rates and any of the measured immunological responses. These results suggest that the formulation tested in this trial did not generate immune responses that were strong enough to reduce parasite growth in naive volunteers.
Journal of The American Society of Nephrology | 2004
Grant A. Challen; Gemma Martinez; Melissa J. Davis; Darrin Taylor; Mark L Crowe; Rohan D. Teasdale; Sean M. Grimmond; Melissa H. Little
Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.
PLOS ONE | 2011
Rathi D. Thiagarajan; Kylie Georgas; Bree Rumballe; Emmanuelle Lesieur; Han Sheng Chiu; Darrin Taylor; Dave Tang; Sean M. Grimmond; Melissa H. Little
The development of the mammalian kidney is well conserved from mouse to man. Despite considerable temporal and spatial data on gene expression in mammalian kidney development, primarily in rodent species, there is a paucity of genes whose expression is absolutely specific to a given anatomical compartment and/or developmental stage, defined here as ‘anchor’ genes. We previously generated an atlas of gene expression in the developing mouse kidney using microarray analysis of anatomical compartments collected via laser capture microdissection. Here, this data is further analysed to identify anchor genes via stringent bioinformatic filtering followed by high resolution section in situ hybridisation performed on 200 transcripts selected as specific to one of 11 anatomical compartments within the midgestation mouse kidney. A total of 37 anchor genes were identified across 6 compartments with the early proximal tubule being the compartment richest in anchor genes. Analysis of minimal and evolutionarily conserved promoter regions of this set of 25 anchor genes identified enrichment of transcription factor binding sites for Hnf4a and Hnf1b, RbpJ (Notch signalling), PPARγ:RxRA and COUP-TF family transcription factors. This was reinforced by GO analyses which also identified these anchor genes as targets in processes including epithelial proliferation and proximal tubular function. As well as defining anchor genes, this large scale validation of gene expression identified a further 92 compartment-enriched genes able to subcompartmentalise key processes during murine renal organogenesis spatially or ontologically. This included a cohort of 13 ureteric epithelial genes revealing previously unappreciated compartmentalisation of the collecting duct system and a series of early tubule genes suggesting that segmentation into proximal tubule, loop of Henle and distal tubule does not occur until the onset of glomerular vascularisation. Overall, this study serves to illuminate previously ill-defined stages of patterning and will enable further refinement of the lineage relationships within mammalian kidney development.
International Journal of Cancer | 2014
Katia Nones; Nic Waddell; Sarah Song; Ann Marie Patch; David Miller; Amber L. Johns; Jianmin Wu; Karin S. Kassahn; David L. A. Wood; Peter Bailey; Lynn Fink; Suzanne Manning; Angelika N. Christ; Craig Nourse; Stephen Kazakoff; Darrin Taylor; Conrad Leonard; David K. Chang; Marc D. Jones; Michelle Thomas; Clare Watson; Mark Pinese; Mark J. Cowley; Ilse Rooman; Marina Pajic; Giovanni Butturini; Anna Malpaga; Vincenzo Corbo; Stefano Crippa; Massimo Falconi
The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome‐wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high‐density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non‐malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5′ region of genes (including the proximal promoter, 5′UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF‐β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT‐ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT‐PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT‐ROBO signaling and up‐regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.
PLOS ONE | 2012
Sarah Song; Katia Nones; David Miller; Ivon Harliwong; Karin S. Kassahn; Mark Pinese; Marina Pajic; Anthony J. Gill; Amber L. Johns; Matthew Anderson; Oliver Holmes; Conrad Leonard; Darrin Taylor; Scott Wood; Qinying Xu; Felicity Newell; Mark J. Cowley; Jianmin Wu; Peter Wilson; Lynn Fink; Andrew V. Biankin; Nic Waddell; Sean M. Grimmond; John V. Pearson
Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.