Darryl J. de Ruiter
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Darryl J. de Ruiter.
Science | 2010
Lee R. Berger; Darryl J. de Ruiter; Steven E. Churchill; Peter Schmid; Kristian J. Carlson; Paul H.G.M. Dirks; Job M. Kibii
From Australopithecus to Homo Our genus Homo is thought to have evolved a little more than 2 million years ago from the earlier hominid Australopithecus. But there are few fossils that provide detailed information on this transition. Berger et al. (p. 195; see the cover) now describe two partial skeletons, including most of the skull, pelvis, and ankle, of a new species of Australopithecus that are informative. The skeletons were found in a cave in South Africa encased in sediments dated by Dirks et al. (p. 205) to about 1.8 to 1.9 million years ago. The fossils share many derived features with the earliest Homo species, including in its pelvis and smaller teeth, and imply that the transition to Homo was in stages. A new species of Australopithecus, about 1.9 million years old, shows many derived features with Homo, helping to reveal its evolution. Despite a rich African Plio-Pleistocene hominin fossil record, the ancestry of Homo and its relation to earlier australopithecines remain unresolved. Here we report on two partial skeletons with an age of 1.95 to 1.78 million years. The fossils were encased in cave deposits at the Malapa site in South Africa. The skeletons were found close together and are directly associated with craniodental remains. Together they represent a new species of Australopithecus that is probably descended from Australopithecus africanus. Combined craniodental and postcranial evidence demonstrates that this new species shares more derived features with early Homo than any other australopith species and thus might help reveal the ancestor of that genus.
eLife | 2015
Lee R. Berger; John Hawks; Darryl J. de Ruiter; Steven E. Churchill; Peter Schmid; Lucas K. Delezene; Tracy L. Kivell; Heather M. Garvin; Scott A. Williams; Jeremy M. DeSilva; Matthew M. Skinner; Charles M. Musiba; Noel Cameron; Trenton W. Holliday; William E. H. Harcourt-Smith; Rebecca Rogers Ackermann; Markus Bastir; Barry Bogin; Debra R. Bolter; Juliet K. Brophy; Zachary Cofran; Kimberly A. Congdon; Andrew S. Deane; Mana Dembo; Michelle S.M. Drapeau; Marina Elliott; Elen M Feuerriegel; Daniel García-Martínez; David J. Green; Alia N. Gurtov
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa. DOI: http://dx.doi.org/10.7554/eLife.09560.001
Science | 2011
Robyn Pickering; Paul H.G.M. Dirks; Zubair A. Jinnah; Darryl J. de Ruiter; Steven E. Churchill; Andy I.R. Herries; Jon D. Woodhead; John Hellstrom; Lee R. Berger
Further U-series dating and the magnetic stratigraphy of the hosting cave deposits show that Australopithecus sediba lived just under 2 million years ago, near or just before the emergence of Homo. Newly exposed cave sediments at the Malapa site include a flowstone layer capping the sedimentary unit containing the Australopithecus sediba fossils. Uranium-lead dating of the flowstone, combined with paleomagnetic and stratigraphic analysis of the flowstone and underlying sediments, provides a tightly constrained date of 1.977 ± 0.002 million years ago (Ma) for these fossils. This refined dating suggests that Au. sediba from Malapa predates the earliest uncontested evidence for Homo in Africa.
Science | 2011
Kristian J. Carlson; Dietrich Stout; Tea Jashashvili; Darryl J. de Ruiter; Paul Tafforeau; Keely B. Carlson; Lee R. Berger
The brain endocast of Australopithecus sediba shows that despite retaining a small brain size, some reorganization of the frontal lobe had commenced, hinting at the later neural development seen in Homo. The virtual endocast of MH1 (Australopithecus sediba), obtained from high-quality synchrotron scanning, reveals generally australopith-like convolutional patterns on the frontal lobes but also some foreshadowing of features of the human frontal lobes, such as posterior repositioning of the olfactory bulbs. Principal component analysis of orbitofrontal dimensions on australopith endocasts (MH1, Sts 5, and Sts 60) indicates that among these, MH1 orbitofrontal shape and organization align most closely with human endocasts. These results are consistent with gradual neural reorganization of the orbitofrontal region in the transition from Australopithecus to Homo, but given the small volume of the MH1 endocast, they are not consistent with gradual brain enlargement before the transition.
Science | 2011
Job M. Kibii; Steven E. Churchill; Peter Schmid; Kristian J. Carlson; Nichelle D. Reed; Darryl J. de Ruiter; Lee R. Berger
Although it had a small brain and skull, Australopithecus sediba shows some human-like features in its reconstructed pelvis. The fossil record of the hominin pelvis reflects important evolutionary changes in locomotion and parturition. The partial pelves of two individuals of Australopithecus sediba were reconstructed from previously reported finds and new material. These remains share some features with australopiths, such as large biacetabular diameter, small sacral and coxal joints, and long pubic rami. The specimens also share derived features with Homo, including more vertically oriented and sigmoid-shaped iliac blades, greater robusticity of the iliac body, sinusoidal anterior iliac borders, shortened ischia, and more superiorly oriented pubic rami. These derived features appear in a species with a small adult brain size, suggesting that the birthing of larger-brained babies was not driving the evolution of the pelvis at this time.
Nature | 2012
Amanda G. Henry; Peter S. Ungar; Benjamin H. Passey; Matt Sponheimer; Lloyd Rossouw; Marion K. Bamford; Paul Sandberg; Darryl J. de Ruiter; Lee R. Berger
Specimens of Australopithecus sediba from the site of Malapa, South Africa (dating from approximately 2 million years (Myr) ago) present a mix of primitive and derived traits that align the taxon with other Australopithecus species and with early Homo. Although much of the available cranial and postcranial material of Au. sediba has been described, its feeding ecology has not been investigated. Here we present results from the first extraction of plant phytoliths from dental calculus of an early hominin. We also consider stable carbon isotope and dental microwear texture data for Au. sediba in light of new palaeoenvironmental evidence. The two individuals examined consumed an almost exclusive C3 diet that probably included harder foods, and both dicotyledons (for example, tree leaves, fruits, wood and bark) and monocotyledons (for example, grasses and sedges). Like Ardipithecus ramidus (approximately 4.4 Myr ago) and modern savanna chimpanzees, Au. sediba consumed C3 foods in preference to widely available C4 resources. The inferred consumption of C3 monocotyledons, and wood or bark, increases the known variety of early hominin foods. The overall dietary pattern of these two individuals contrasts with available data for other hominins in the region and elsewhere.
Philosophical Transactions of the Royal Society B | 2010
Julia A. Lee-Thorp; Matt Sponheimer; Benjamin H. Passey; Darryl J. de Ruiter; Thure E. Cerling
Accumulating isotopic evidence from fossil hominin tooth enamel has provided unexpected insights into early hominin dietary ecology. Among the South African australopiths, these data demonstrate significant contributions to the diet of carbon originally fixed by C4 photosynthesis, consisting of C4 tropical/savannah grasses and certain sedges, and/or animals eating C4 foods. Moreover, high-resolution analysis of tooth enamel reveals strong intra-tooth variability in many cases, suggesting seasonal-scale dietary shifts. This pattern is quite unlike that seen in any great apes, even ‘savannah’ chimpanzees. The overall proportions of C4 input persisted for well over a million years, even while environments shifted from relatively closed (ca 3 Ma) to open conditions after ca 1.8 Ma. Data from East Africa suggest a more extreme scenario, where results for Paranthropus boisei indicate a diet dominated (approx. 80%) by C4 plants, in spite of indications from their powerful ‘nutcracker’ morphology for diets of hard objects. We argue that such evidence for engagement with C4 food resources may mark a fundamental transition in the evolution of hominin lineages, and that the pattern had antecedents prior to the emergence of Australopithecus africanus. Since new isotopic evidence from Aramis suggests that it was not present in Ardipithecus ramidus at 4.4 Ma, we suggest that the origins lie in the period between 3 and 4 Myr ago.
Journal of Mammalogy | 2006
Jacqui Codron; Julia A. Lee-Thorp; Matt Sponheimer; Daryl Codron; Rina Grant; Darryl J. de Ruiter
Abstract African elephants (Loxodonta africana) are mixed feeders, incorporating varying proportions of grass and browse into their diets. Disagreement persists as to whether elephants preferentially graze or browse, and the degree to which the consumption of these foods is a reflection of their local availability. We used stable carbon isotope analysis of feces to investigate seasonal and spatial variation in the diets of elephants from Kruger National Park (KNP), South Africa. Elephant diets (overall average ∼35% grass) are shown to be distinct from those of grazers (>90% grass), browsers (<5% grass), and another mixed-feeder, the impala (Aepyceros melampus; ∼50% grass). Fecal δ13C values suggest that elephant populations from northern KNP eat more grass (∼40%) during the dry season than do their southern counterparts (∼10%). The wet-season diets of elephants from northern and southern KNP include similar amounts of grass (∼50%), because elephants in the south, but not in the north, ate significantly more grass during this time. Although habitat differences in KNP appear to account partially for variations in elephant diets, the specific influence of each habitat type on diet selectivity is not clear. The homogeneity of woody vegetation in the north (dominated by Colophospermum mopane “shrubveld”) may deter browsing and force elephants in this area to opt for alternative food sources (grass) throughout the seasonal cycle.
eLife | 2015
Paul H.G.M. Dirks; Lee R. Berger; Eric M. Roberts; Jan D. Kramers; John Hawks; Patrick S. Randolph-Quinney; Marina Elliott; Charles M. Musiba; Steven E. Churchill; Darryl J. de Ruiter; Peter Schmid; Lucinda Backwell; G.A. Belyanin; Pedro Boshoff; K Lindsay Hunter; Elen M Feuerriegel; Alia N. Gurtov; James du G Harrison; Rick Hunter; Ashley Kruger; Hannah Morris; Tebogo V. Makhubela; Becca Peixotto; Steven Tucker
We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H. naledi, and occur within clay-rich sediments derived from in situ weathering, and exogenous clay and silt, which entered the chamber through fractures that prevented passage of coarser-grained material. The chamber was always in the dark zone, and not accessible to non-hominins. Bone taphonomy indicates that hominin individuals reached the chamber complete, with disarticulation occurring during/after deposition. Hominins accumulated over time as older laminated mudstone units and sediment along the cave floor were eroded. Preliminary evidence is consistent with deliberate body disposal in a single location, by a hominin species other than Homo sapiens, at an as-yet unknown date. DOI: http://dx.doi.org/10.7554/eLife.09561.001
Science | 2013
Steven E. Churchill; Trenton W. Holliday; Kristian J. Carlson; Tea Jashashvili; Marisa E. Macias; Sandra Mathews; Tawnee L. Sparling; Peter Schmid; Darryl J. de Ruiter; Lee R. Berger
The evolution of the human upper limb involved a change in function from its use for both locomotion and prehension (as in apes) to a predominantly prehensile and manipulative role. Well-preserved forelimb remains of 1.98-million-year-old Australopithecus sediba from Malapa, South Africa, contribute to our understanding of this evolutionary transition. Whereas other aspects of their postcranial anatomy evince mosaic combinations of primitive (australopith-like) and derived (Homo-like) features, the upper limbs (excluding the hand and wrist) of the Malapa hominins are predominantly primitive and suggest the retention of substantial climbing and suspensory ability. The use of the forelimb primarily for prehension and manipulation appears to arise later, likely with the emergence of Homo erectus.