Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darwin A. Campbell is active.

Publication


Featured researches published by Darwin A. Campbell.


Bioinformatics | 2010

The Locus Lookup tool at MaizeGDB

Carson M. Andorf; Carolyn J. Lawrence; Lisa C. Harper; Mary L. Schaeffer; Darwin A. Campbell; Taner Z. Sen

SUMMARY Methods to automatically integrate sequence information with physical and genetic maps are scarce. The Locus Lookup tool enables researchers to define windows of genomic sequence likely to contain loci of interest where only genetic or physical mapping associations are reported. Using the Locus Lookup tool, researchers will be able to locate specific genes more efficiently that will ultimately help them develop a better maize plant. With the availability of the well-documented source code, the tool can be easily adapted to other biological systems. AVAILABILITY The Locus Lookup tool is available on the web at http://maizegdb.org/cgi-bin/locus_lookup.cgi. It is implemented in PHP, Oracle and Apache, with all major browsers supported. Source code is freely available for download at http://ftp.maizegdb.org/open_source/locus_lookup/.


Database | 2011

MaizeGDB: curation and outreach go hand-in-hand

Mary L. Schaeffer; Lisa C. Harper; Jack M. Gardiner; Carson M. Andorf; Darwin A. Campbell; Ethalinda K. S. Cannon; Taner Z. Sen; Carolyn J. Lawrence

First released in 1991 with the name MaizeDB, the Maize Genetics and Genomics Database, now MaizeGDB, celebrates its 20th anniversary this year. MaizeGDB has transitioned from a focus on comprehensive curation of the literature, genetic maps and stocks to a paradigm that accommodates the recent release of a reference maize genome sequence, multiple diverse maize genomes and sequence-based gene expression data sets. The MaizeGDB Team is relatively small, and relies heavily on the research community to provide data, nomenclature standards and most importantly, to recommend future directions, priorities and strategies. Key aspects of MaizeGDBs intimate interaction with the community are the co-location of curators with maize research groups in multiple locations across the USA as well as coordination with MaizeGDB’s close partner, the Maize Genetics Cooperation—Stock Center. In this report, we describe how the MaizeGDB Team currently interacts with the maize research community and our plan for future interactions that will support updates to the functional and structural annotation of the B73 reference genome.


Nucleic Acids Research | 2007

MaizeGDB's new data types, resources and activities

Carolyn J. Lawrence; Mary L. Schaeffer; Trent E. Seigfried; Darwin A. Campbell; Lisa C. Harper

MaizeGDB is the Maize Genetics and Genomics Database. Available at MaizeGDB are diverse data that support maize research including maps, gene product information, loci and their various alleles, phenotypes (both naturally occurring and as a result of directed mutagenesis), stocks, sequences, molecular markers, references and contact information for maize researchers worldwide. Also available through MaizeGDB are various community support service bulletin boards including the Editorial Boards list of high-impact papers, information about the Annual Maize Genetics Conference and the Jobs board where employment opportunities are posted. Reported here are data updates, improvements to interfaces and changes to standard operating procedures that have been made during the past 2 years. MaizeGDB is freely available and can be accessed online at .


Nucleic Acids Research | 2016

MaizeGDB update: new tools, data and interface for the maize model organism database

Carson M. Andorf; Ethalinda K. S. Cannon; John L. Portwood; Jack M. Gardiner; Lisa C. Harper; Mary L. Schaeffer; Bremen L. Braun; Darwin A. Campbell; Abhinav Vinnakota; Venktanaga V. Sribalusu; Miranda Huerta; Kyoung Tak Cho; Kokulapalan Wimalanathan; Jacqueline D. Richter; Emily D. Mauch; Bhavani Satyanarayana Rao; Scott M. Birkett; Taner Z. Sen; Carolyn J. Lawrence-Dill

MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org.


Database | 2010

MaizeGDB becomes ‘sequence-centric’

Taner Z. Sen; Carson M. Andorf; Mary L. Schaeffer; Lisa C. Harper; Michael E. Sparks; Jon Duvick; Volker Brendel; Ethalinda K. S. Cannon; Darwin A. Campbell; Carolyn J. Lawrence

MaizeGDB is the maize research community’s central repository for genetic and genomic information about the crop plant and research model Zea mays ssp. mays. The MaizeGDB team endeavors to meet research needs as they evolve based on researcher feedback and guidance. Recent work has focused on better integrating existing data with sequence information as it becomes available for the B73, Mo17 and Palomero Toluqueño genomes. Major endeavors along these lines include the implementation of a genome browser to graphically represent genome sequences; implementation of POPcorn, a portal ancillary to MaizeGDB that offers access to independent maize projects and will allow BLAST similarity searches of participating projects’ data sets from a single point; and a joint MaizeGDB/PlantGDB project to involve the maize community in genome annotation. In addition to summarizing recent achievements and future plans, this article also discusses specific examples of community involvement in setting priorities and design aspects of MaizeGDB, which should be of interest to other database and resource providers seeking to better engage their users. MaizeGDB is accessible online at http://www.maizegdb.org. Database URL: http://www.maizegdb.org


Database | 2010

Choosing a genome browser for a Model Organism Database: surveying the Maize community

Taner Z. Sen; Lisa C. Harper; Mary L. Schaeffer; Carson M. Andorf; Trent E. Seigfried; Darwin A. Campbell; Carolyn J. Lawrence

As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly. Database URL: http://gbrowse.maizegdb.org/


International Journal of Plant Genomics | 2011

POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data

Ethalinda K. S. Cannon; Scott M. Birkett; Bremen L. Braun; Sateesh Kumar Kodavali; Douglas Jennewein; Alper Yilmaz; Valentin Antonescu; Corina Antonescu; Lisa C. Harper; Jack M. Gardiner; Mary L. Schaeffer; Darwin A. Campbell; Carson M. Andorf; Destri Andorf; Damon Lisch; Karen E. Koch; Donald R. McCarty; John Quackenbush; Erich Grotewold; Carol Lushbough; Taner Z. Sen; Carolyn J. Lawrence

The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time—sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorns utility are provided herein.


Nature Communications | 2017

The effect of artificial selection on phenotypic plasticity in maize

Joseph L. Gage; Diego Jarquin; Cinta Romay; Aaron J. Lorenz; Edward S. Buckler; Shawn M. Kaeppler; Naser Alkhalifah; M. Bohn; Darwin A. Campbell; Jode W. Edwards; David Ertl; Sherry Flint-Garcia; Jack M. Gardiner; Byron Good; Candice N. Hirsch; James B. Holland; David C. Hooker; Joseph E. Knoll; Judith M. Kolkman; Greg R. Kruger; Nick Lauter; Carolyn J. Lawrence-Dill; E. A. Lee; Jonathan P. Lynch; Seth C. Murray; Rebecca J. Nelson; Jane Petzoldt; Torbert Rocheford; James C. Schnable; Brian T. Scully

Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0–5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements.Breeding has increased crop productivity, but whether it has also changed phenotypic plasticity is unclear. Here, the authors find maize genomic regions selected for high productivity show reduced contribution to genotype by environment variation and provide evidence for regulatory control of phenotypic stability.


Database | 2011

The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video

Lisa C. Harper; Mary L. Schaeffer; Jordan Thistle; Jack M. Gardiner; Carson M. Andorf; Darwin A. Campbell; Ethalinda K. S. Cannon; Bremen L. Braun; Scott M. Birkett; Carolyn J. Lawrence; Taner Z. Sen

Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is ‘Using the MaizeGDB Genome Browser’, which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database URL: http://www.maizegdb.org/


PLOS Computational Biology | 2018

Crowdsourcing image analysis for plant phenomics to generate ground truth data for machine learning

Naihui D Zhou; Zachary D. Siegel; Scott Zarecor; Nigel Lee; Darwin A. Campbell; Carson M Andorf; Dan Nettleton; Carolyn J. Lawrence-Dill; Baskar Ganapathysubramanian; Jonathan W. Kelly; Iddo Friedberg

The accuracy of machine learning tasks critically depends on high quality ground truth data. Therefore, in many cases, producing good ground truth data typically involves trained professionals; however, this can be costly in time, effort, and money. Here we explore the use of crowdsourcing to generate a large number of training data of good quality. We explore an image analysis task involving the segmentation of corn tassels from images taken in a field setting. We investigate the accuracy, speed and other quality metrics when this task is performed by students for academic credit, Amazon MTurk workers, and Master Amazon MTurk workers. We conclude that the Amazon MTurk and Master Mturk workers perform significantly better than the for-credit students, but with no significant difference between the two MTurk worker types. Furthermore, the quality of the segmentation produced by Amazon MTurk workers rivals that of an expert worker. We provide best practices to assess the quality of ground truth data, and to compare data quality produced by different sources. We conclude that properly managed crowdsourcing can be used to establish large volumes of viable ground truth data at a low cost and high quality, especially in the context of high throughput plant phenotyping. We also provide several metrics for assessing the quality of the generated datasets.

Collaboration


Dive into the Darwin A. Campbell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa C. Harper

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge