Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daryl E. Klein is active.

Publication


Featured researches published by Daryl E. Klein.


Journal of Biological Chemistry | 1998

Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains

Jennifer M. Kavran; Daryl E. Klein; Anthony Lee; Marco Falasca; Steven J. Isakoff; Edward Y. Skolnik; Mark A. Lemmon

Pleckstrin homology (PH) domains are small protein modules involved in recruitment of signaling molecules to cellular membranes, in some cases by binding specific phosphoinositides. We describe use of a convenient “dot-blot” approach to screen 10 different PH domains for those that recognize particular phosphoinositides. Each PH domain bound phosphoinositides in the assay, but only two (from phospholipase C-δ1and Grp1) showed clear specificity for a single species. Using soluble inositol phosphates, we show that the Grp1 PH domain (originally cloned on the basis of its phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding) binds specifically tod-myo-inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (the PtdIns(3,4,5)P3headgroup) with K D = 27.3 nm, but bindsd-myo-inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) or d-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) over 80-fold more weakly. We show that this specificity allows localization of the Grp1 PH domain to the plasma membrane of mammalian cells only when phosphatidylinositol 3-kinase (PI 3-K) is activated. The presence of three adjacent equatorial phosphate groups was critical for inositol phosphate binding by the Grp1 PH domain. By contrast, another PH domain capable of PI 3-K-dependent membrane recruitment (encoded by EST684797) does not distinguish Ins(1,3,4)P3 from Ins(1,3,4,5)P3 (binding both with very high affinity), despite selecting strongly against Ins(1,4,5)P3. The remaining PH domains tested appear significantly less specific for particular phosphoinositides. Together with data presented in the literature, our results suggest that many PH domains bind similarly to multiple phosphoinositides (and in some cases phosphatidylserine), and are likely to be regulated in vivo by the most abundant species to which they bind. Thus, using the same simple approach to study several PH domains simultaneously, our studies suggest that highly specific phosphoinositide binding is a characteristic of relatively few cases.


Journal of Biological Chemistry | 1998

The Pleckstrin Homology Domains of Dynamin Isoforms Require Oligomerization for High Affinity Phosphoinositide Binding

Daryl E. Klein; Anthony Lee; David W. Frank; Michael S. Marks; Mark A. Lemmon

The dynamins are 100-kDa GTPases involved in the scission event required for formation of endocytotic vesicles. The two main described mammalian dynamins (dynamin−1 and dynamin−2) both contain a pleckstrin homology (PH) domain, which has been implicated in dynamin binding to (and activation by) acidic phospholipids, most notably phosphoinositides. We demonstrate that the PH domains of both dynamin isoforms require oligomerization for high affinity phosphoinositide binding. Strong phosphoinositide binding was detected only when the PH domains were dimerized by fusion to glutathioneS-transferase, or via a single engineered intermolecular disulfide bond. Phosphoinositide binding specificities agreed reasonably with reported effects of different phospholipids on dynamin GTPase activity. Although they differ in their ability to inhibit rapid endocytosis in adrenal chromaffin cells, the dynamin−1 and dynamin−2 PH domains showed identical phosphoinositide binding specificities. Since oligomerization is required for binding of the dynamin PH domain to phosphoinositides, it follows that PH domain-mediated phosphoinositide binding will favor oligomerization of intact dynamin (which has an inherent tendency to self-associate). We propose that the dynamin PH domain thus mediates the observed cooperative binding of dynamin to membranes containing acidic phospholipids and promotes the self-assembly that is critical for both stimulation of its GTPase activity and its ability to achieve membrane scission.


Nature | 2004

Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

Daryl E. Klein; Valerie M. Nappi; Gregory T. Reeves; Stanislav Y. Shvartsman; Mark A. Lemmon

The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.


Nature | 2009

ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

Diego Alvarado; Daryl E. Klein; Mark A. Lemmon

The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular ‘tether’ in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.The orphan receptor tyrosine kinase ErbB2 (HER2/Neu) transforms cells when overexpressed1, and is an important therapeutic target in human cancer2,3. Structural studies4,5 have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular ‘tether’ in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor6. Although ErbB2 is clearly unique among the four human ErbB receptors6,7, we show here that it is the closest structural relative of the single EGF receptor family member (dEGFR) in Drosophila melanogaster. Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands8, yet a crystal structure shows that it too lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches to target novel aspects of this orphan receptor.


Journal of Virology | 2013

Structure of a Dengue Virus Envelope Protein Late-Stage Fusion Intermediate

Daryl E. Klein; Jason L. Choi; Stephen C. Harrison

ABSTRACT The final stages of dengue virus fusion are thought to occur when the membrane-proximal stem drives the transmembrane anchor of the viral envelope protein (E) toward the fusion loop, buried in the target cell membrane. Crystal structures of E have lacked this essential stem region. We expressed and crystallized soluble mutant forms of the dengue virus envelope protein (sE) that include portions of the juxtamembrane stem. Their structures represent late-stage fusion intermediates. The proximal part of the stem has both intra- and intermolecular interactions, so the chain “zips up” along the trimer seam. The penultimate interaction we detected involves the conserved residue F402, which has hydrophobic contacts with a conserved surface on domain II. These interactions do not require any larger-scale changes in trimer packing. The techniques for expression and crystallization of sE containing stem reported here may allow further characterization of the final stages of flavivirus fusion.


Nature | 2008

Structural basis for EGFR ligand sequestration by Argos.

Daryl E. Klein; Steven Stayrook; Fumin Shi; Kartik Narayan; Mark A. Lemmon

Members of the epidermal growth factor receptor (EGFR) or ErbB/HER family and their activating ligands are essential regulators of diverse developmental processes. Inappropriate activation of these receptors is a key feature of many human cancers, and its reversal is an important clinical goal. A natural secreted antagonist of EGFR signalling, called Argos, was identified in Drosophila. We showed previously that Argos functions by directly binding (and sequestering) growth factor ligands that activate EGFR. Here we describe the 1.6-Å resolution crystal structure of Argos bound to an EGFR ligand. Contrary to expectations, Argos contains no EGF-like domain. Instead, a trio of closely related domains (resembling a three-finger toxin fold) form a clamp-like structure around the bound EGF ligand. Although structurally unrelated to the receptor, Argos mimics EGFR by using a bipartite binding surface to entrap EGF. The individual Argos domains share unexpected structural similarities with the extracellular ligand-binding regions of transforming growth factor-β family receptors. The three-domain clamp of Argos also resembles the urokinase-type plasminogen activator (uPA) receptor, which uses a similar mechanism to engulf the EGF-like module of uPA. Our results indicate that undiscovered mammalian counterparts of Argos may exist among other poorly characterized structural homologues. In addition, the structures presented here define requirements for the design of artificial EGF-sequestering proteins that would be valuable anti-cancer therapeutics.


eLife | 2014

Sequential conformational rearrangements in flavivirus membrane fusion

Luke H. Chao; Daryl E. Klein; Aaron G. Schmidt; Jennifer M Peña; Stephen C. Harrison

The West Nile Virus (WNV) envelope protein, E, promotes membrane fusion during viral cell entry by undergoing a low-pH triggered conformational reorganization. We have examined the mechanism of WNV fusion and sought evidence for potential intermediates during the conformational transition by following hemifusion of WNV virus-like particles (VLPs) in a single particle format. We have introduced specific mutations into E, to relate their influence on fusion kinetics to structural features of the protein. At the level of individual E subunits, trimer formation and membrane engagement of the threefold clustered fusion loops are rate-limiting. Hemifusion requires at least two adjacent trimers. Simulation of the kinetics indicates that availability of competent monomers within the contact zone between virus and target membrane makes trimerization a bottleneck in hemifusion. We discuss the implications of the model we have derived for mechanisms of membrane fusion in other contexts. DOI: http://dx.doi.org/10.7554/eLife.04389.001


Biochemical Journal | 2017

A ligand divided: antagonist, agonist and analog control

Daryl E. Klein

Inhibiting receptor tyrosine kinases has been a cornerstone of cancer therapeutics for decades. Treatment strategies largely involve small-molecule kinase inhibitors and monoclonal antibodies. For receptors activated by constitutively dimeric ligands, another potential mechanism of inhibition exists: developing monomeric ligands that prevent receptor dimerization. In a recent issue of the Biochemical Journal, Zur et al. [Biochem. J. (2017) 474, 2601-2617] describe the details of creating such an inhibitor directed toward the macrophage colony-stimulating factor receptor, c-FMS. In the process of teasing apart the ligand dimer, they also uncover a potential cryptic regulatory mechanism in this receptor subfamily.


Cell | 2010

Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

Diego Alvarado; Daryl E. Klein; Mark A. Lemmon


Biochemistry | 2001

High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization.

Vijay G. Sankaran; Daryl E. Klein; Mira M. Sachdeva; Mark A. Lemmon

Collaboration


Dive into the Daryl E. Klein's collaboration.

Top Co-Authors

Avatar

Mark A. Lemmon

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Alvarado

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Gregory T. Reeves

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Stephen C. Harrison

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge