Daša Zupančič
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daša Zupančič.
Journal of Pineal Research | 2008
Daša Zupančič; Kristijan Jezernik; Gaj Vidmar
Abstract: Melatonin was recently shown to have protective effects against cyclophosphamide (CP)‐induced hemorrhagic cystitis (HC) by diminishing bladder oxidative stress. HC is accompanied by destruction of the bladder urothelium and followed by apoptosis and rapid regeneration via proliferation and differentiation of urothelial cells, reaching complete restoration of normal urothelium in three weeks. Therefore, the effect of melatonin on apoptosis, proliferation and differentiation of urothelial cells, during destruction and regeneration of the urothelium three‐weeks after a single dose CP treatment, was studied. F344 male rats were injected intraperitoneally with saline (control group) or melatonin (Mel group) or a single dose of CP (100 mg/kg; CP group) or melatonin (10 mg/kg) with CP (Mel + CP group). Melatonin co‐treatment with CP significantly reduced apoptosis and increased proliferation of urothelial cells at day 1 and thus prevented extensive loss of cells from the urothelium. However, proliferation indices at days 4 and 7 after melatonin and CP co‐treatment suddenly dropped and therefore the development of hyperplasia was prevented. Melatonin co‐treatment with CP also resulted in earlier differentiation of superficial urothelial cells. Melatonin seems to have protective effect against CP‐induced urothelial damage and a favorable impact on regeneration and restoration of normal urothelium, since it reduces the number of apoptotic and proliferating urothelial cells and results in their earlier differentiation.
BioMed Research International | 2014
Michael Winder; Gunnar Tobin; Daša Zupančič; Rok Romih
The urothelium was long considered to be a silent barrier protecting the body from the toxic effects of urine. However, today a number of dynamic abilities of the urothelium are well recognized, including its ability to act as a sensor of the intravesical environment. During recent years several pathways of these urothelial abilities have been proposed and a major part of these pathways includes release of signalling molecules. It is now evident that the urothelium represents only one part of the sensory web. Urinary bladder signalling is finely tuned machinery of signalling molecules, acting in autocrine and paracrine manner, and their receptors are specifically distributed among different types of cells in the urinary bladder. In the present review the current knowledge of the formation, release, and signalling effects of urothelial acetylcholine, ATP, adenosine, and nitric oxide in health and disease is discussed.
Cell and Tissue Research | 2009
Samo Hudoklin; Daša Zupančič; Rok Romih
The differentiation of urothelial cells is characterized by the synthesis of uroplakins and their assembly into the asymmetric unit membrane. The Golgi apparatus (GA) has been proposed to play a central role in asymmetric unit membrane formation. We have studied the distribution and organization of the GA in normal mouse urothelial cells and in the superficial urothelial cells that undergo differentiation following cyclophosphamide-induced regeneration, in correlation with urothelial cell differentiation. In normal urothelium, immature basal cells have a simple GA, which is small and distributed close to the nucleus. In intermediate cells, the GA starts to expand into the cytoplasm, whereas the GA of terminally differentiated umbrella cells is complex, being large and spread over the whole basal half of the cytoplasm. During early stages of regeneration after cyclophosphamide treatment, the GA of superficial cells is simple and no markers of urothelial differentiation (uroplakins or asymmetric unit membranes, discoidal or fusiform vesicles, apical surface covered with microvilli) are expressed. At a later stage, the GA expands and, in the final stage of regeneration, when cells express all markers of terminal urothelial differentiation, the GA become complex once again. Our results show that: (1) GA distribution and organization in urothelial cells is differentiation-dependent; (2) the GA matures from a simple form in partially differentiated cells to a complex form in terminally differentiated superficial cells; (3) major rearrangements of GA distribution and organization correlate with the beginning of asymmetric unit membrane production. Thus, GA maturation seems to be crucial for asymmetric unit membrane formation.
Histochemistry and Cell Biology | 2011
Daša Zupančič; Maja Zakrajšek; Ge Zhou; Rok Romih
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.
International Journal of Nanomedicine | 2013
Samo Hudoklin; Daša Zupančič; Darko Makovec; Mateja Erdani Kreft; Rok Romih
Background Urothelial bladder is the reservoir of urine and the urothelium minimizes the exchange of urine constituents with this tissue. Our aim was to test 1.9 nm biocompatible gold nanoparticles as a novel marker of internalization into the urothelial cells under physiological conditions in vivo. Methods We compared normal and neoplastic mice urothelium. Neoplastic lesions were induced by 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water for 10 weeks. Nanoparticles, intravenously injected into normal and BBN-treated mice, were filtered through the kidneys and became constituents of the urine within 90 minutes after injection. Results Gold nanoparticles were densely accumulated in the urine, while their internalization into urothelial cells depended on the cell differentiation stage. In the terminally differentiated superficial urothelial cells of normal animals, nanoparticles were occasionally found in the endosomes, but not in the fusiform vesicles. Regions of exfoliated cells were occasionally found in the normal urothelium. Superficial urothelial cells located next to exfoliated regions contained gold nanoparticles in the endosomes and in the cytosol beneath the apical plasma membrane. The urothelium of BBN-treated animals developed fat hyperplasia with moderate dysplasia. The superficial cells of BBN-treated animals were partially differentiated as demonstrated by the lack of fusiform vesicles. These cells contained the gold nanoparticles distributed in the endosomes and throughout their cytosol. Conclusion Gold nanoparticles are a valuable marker to study urine internalization into urothelial cells in vivo. Moreover, they can be used as a sensitive marker of differentiation and functionality of urothelial cells.
BioMed Research International | 2014
Gilho Lee; Rok Romih; Daša Zupančič
Cystitis is a urinary bladder disease with many causes and symptoms. The severity of cystitis ranges from mild lower abdominal discomfort to life-threatening haemorrhagic cystitis. The course of disease is often chronic or recurrent. Although cystitis represents huge economical and medical burden throughout the world and in many cases treatments are ineffective, the mechanisms of its origin and development as well as measures for effective treatment are still poorly understood. However, many studies have demonstrated that urothelial dysfunction plays a crucial role. In the present review we first discuss fundamental issues of urothelial cell biology, which is the core for comprehension of cystitis. Then we focus on many forms of cystitis, its current treatments, and advances in its research. Additionally we review haemorrhagic cystitis with one of the leading causative agents being chemotherapeutic drug cyclophosphamide and summarise its management strategies. At the end we describe an excellent and widely used animal model of cyclophosphamide induced cystitis, which gives researches the opportunity to get a better insight into the mechanisms involved and possibility to develop new therapy approaches.
Virchows Archiv | 2011
Daša Zupančič; Zdenka Ovčak; Gaj Vidmar; Rok Romih
In normal urothelium, superficial umbrella cells express four major integral membrane proteins, uroplakins UPIa, UPIb, UPII, and UPIIIa, which compose urothelial plaques. In the apical plasma membrane, urothelial plaques form microridges. During neoplastic changes, microridges are replaced by microvilli, while uroplakin expression is retained. We correlated individual uroplakin expression with apical plasma membrane structure, cytokeratin 20 expression, and urothelial cell proliferation (Ki-67). Male Wistar rats were treated with 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water, which caused flat hyperplasia with mild dysplasia, low-grade papillary urothelial carcinoma, invasive low- and high-grade papillary urothelial carcinoma and invasive squamous cell carcinoma with extensive keratinization, grade 2. During urothelial carcinogenesis, UPII expression was the most decreased in all urothelial lesions, while UPIa, UPIb, and UPIIIa expression was differently altered in different types of lesions. Superficial cells were covered with microvilli and ropy ridges, while microridges were disappearing. The expression of cytokeratin 20 was decreased and limited to superficial urothelial cells. Proliferation indices were increased, except for invasive squamous cell carcinoma with extensive keratinization. Our results indicate that during urothelial carcinogenesis the expression of UPII is diminished, suggesting that UPIb/UPIIIa heterodimer can still be formed, while heterodimer UPIa/UPII formation is disrupted. Correlation between decreased level of UPII expression and changed apical plasma membrane structure suggests that diminished expression of UPII hinders the urothelial plaque formation.
Journal of Histochemistry and Cytochemistry | 2009
Andreja Erman; Daša Zupančič; Kristijan Jezernik
Postnatal rat urothelium was studied from day 0 to day 14, when intense cell loss as part of tissue remodeling was expected. The morphological and biochemical characteristics of urothelial cells in the tissue and released cells were investigated by light and electron microscopy, by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay, by annexin V/propidium iodide assay, and by immunofluorescent detection of active caspases and tight-junction protein occludin. Intense apoptosis and massive desquamation were detected between postnatal days 7 and 10. During this period, active caspases and TUNEL-positive cells were found in the urothelium. Disassembled cell–cell junctions were detected between cells. The majority of desquamated cells expressed no apoptotic cell morphology, but were active caspase positive and TUNEL positive. Ann+/PI- apoptotic bodies and desquamated Ann+/PI+ cells were detected in the lumen. These results indicate that apoptosis and desquamation participate in urothelial cell loss in the rat early postnatal period, indispensable for fast urothelial remodeling during development.
BioMed Research International | 2014
Igor Sterle; Daša Zupančič; Rok Romih
Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.
Microscopy Research and Technique | 2014
Daša Zupančič; Rok Romih; Horst Robenek; Kristina Žužek Rožman; Zoran Samardžija; Rok Kostanjšek; Mateja Erdani Kreft
The urothelium forms the blood–urine barrier, which depends on the complex organization of transmembrane proteins, uroplakins, in the apical plasma membrane of umbrella cells. Uroplakins compose 16 nm intramembrane particles, which are assembled into urothelial plaques. Here we present an integrated survey on the molecular ultrastructure of urothelial plaques in normal umbrella cells with advanced microscopic techniques. We analyzed the ultrastructure and performed measurements of urothelial plaques in the normal mouse urothelium. We used field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) on immunolabeled ultrathin sections (immuno‐TEM), and freeze‐fracture replicas (FRIL). We performed immunolabeling of uroplakins for scanning electron microscopy (immuno‐FESEM). All microscopic techniques revealed a variability of urothelial plaque diameters ranging from 332 to 1179 nm. All immunolabeling techniques confirmed the presence of uroplakins in urothelial plaques. FRIL showed the association of uroplakins with 16 nm intramembrane particles and their organization into plaques. Using different microscopic techniques and applied qualitative and quantitative evaluation, new insights into the urothelial apical surface molecular ultrastructure have emerged and may hopefully provide a timely impulse for many ongoing studies. The combination of various microscopic techniques used in this study shows how these techniques complement one another. The described advantages and disadvantages of each technique should be considered for future studies of molecular and structural membrane specializations in other cells and tissues. Microsc. Res. Tech. 77:896–901, 2014.