Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dashyant Dhanak is active.

Publication


Featured researches published by Dashyant Dhanak.


Nature | 2012

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations

Michael T. McCabe; Heidi M. Ott; Gopinath Ganji; Susan Korenchuk; Christine Thompson; Glenn S. Van Aller; Yan Liu; Alan P. Graves; Anthony Della Pietra; Elsie Diaz; Louis V. LaFrance; Mark Mellinger; Celine Duquenne; Xinrong Tian; Ryan G. Kruger; Charles F. McHugh; Martin Brandt; William Henry Miller; Dashyant Dhanak; Sharad K. Verma; Peter J. Tummino; Caretha L. Creasy

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Nature Chemical Biology | 2015

The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.


Nature | 2013

Chromatin proteins and modifications as drug targets

Kristian Helin; Dashyant Dhanak

A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation is complex, new inhibitors such as these will hopefully be of clinical use in the coming years.


Nature | 2014

Smyd3 links lysine methylation of map3k2 to ras-driven cancer

Pawel K. Mazur; Nicolas Reynoird; Purvesh Khatri; Pascal W. T. C. Jansen; Alex W. Wilkinson; Shichong Liu; Olena Barbash; Glenn S. Van Aller; Michael Huddleston; Dashyant Dhanak; Peter J. Tummino; Ryan G. Kruger; Benjamin A. Garcia; Atul J. Butte; Michiel Vermeulen; Julien Sage; Or Gozani

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Antitumor activity of an allosteric inhibitor of centromere-associated protein-E

Kenneth W. Wood; Latesh Lad; Lusong Luo; Xiangping Qian; Steven D. Knight; Neysa Nevins; Katjuša Brejc; David Sutton; Aidan G. Gilmartin; Penelope Chua; Radhika Desai; Stephen Schauer; Dean E. McNulty; Roland S. Annan; Lisa Belmont; Carlos Garcia; Yan Lee; Melody Diamond; Leo F. Faucette; Michele Giardiniere; Shu-Yun Zhang; Chiu-Mei Sun; Justin D. Vidal; Serge Lichtsteiner; William D. Cornwell; Joel Greshock; Richard Wooster; Jeffrey T. Finer; Robert A. Copeland; Pearl S. Huang

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.


Journal of Biological Chemistry | 2000

Identification of Potent, Selective Non-peptide CC Chemokine Receptor-3 Antagonist That Inhibits Eotaxin-, Eotaxin-2-, and Monocyte Chemotactic Protein-4-induced Eosinophil Migration

John R. White; Judithann M. Lee; Kimberly A. Dede; Christina S. Imburgia; George Wai-Kin Chan; James A. Fornwald; Dashyant Dhanak; Lisa T. Christmann; James J. Foley; Dulcie B. Schmidt; Henry M. Sarau

Eosinophils have been implicated in the pathogenesis of asthma and other allergic diseases. Several CC chemokines including eotaxin (CCL-11), eotaxin-2 (CCL-24), RANTES (CCL-5), and monocyte chemotactic protein-3 (MCP-3, CCL-7) and 4 (MCP-4, CCL-13) are potent eosinophil chemotactic and activating peptides acting through CC chemokine receptor-3 (CCR3). Thus, antagonism of CCR3 could have a therapeutic role in asthma and other eosinophil-mediated diseases. A high throughput, cellular functional screen was configured using RBL-2H3 cells stably expressing CCR3 (RBL-2H3-CCR3) to identify non-peptide receptor antagonists. A small molecule CCR3 antagonist was identified, SK&F 45523, and chemical optimization led to the generation of a number of highly potent, selective CCR3 antagonists including SB-297006 and SB-328437. These compounds were further characterized in vitro and demonstrated high affinity, competitive inhibition of125I-eotaxin and 125I-MCP-4 binding to human eosinophils. The compounds were potent inhibitors of eotaxin- and MCP-4-induced Ca2+ mobilization in RBL-2H3-CCR3 cells and eosinophils. Additionally, SB-328437 inhibited eosinophil chemotaxis induced by three ligands that activate CCR3 with similar potencies. Selectivity was affirmed using a panel of 10 seven-transmembrane receptors. This is the first description of a non-peptide CCR3 antagonist, which should be useful in further elucidating the pathophysiological role of CCR3 in allergic inflammatory diseases.


PLOS ONE | 2013

BET Inhibition Silences Expression of MYCN and BCL2 and Induces Cytotoxicity in Neuroblastoma Tumor Models

Anastasia Wyce; Gopinath Ganji; Kimberly N. Smitheman; Chun-wa Chung; Susan Korenchuk; Yuchen Bai; Olena Barbash; BaoChau Le; Peter D. Craggs; Michael T. McCabe; Karen M. Kennedy-Wilson; Lydia V. Sanchez; Romain Luc Marie Gosmini; Nigel James Parr; Charles F. McHugh; Dashyant Dhanak; Rab K. Prinjha; Kurt R. Auger; Peter J. Tummino

BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726), and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.


Biochemical Journal | 2008

Effects of oncogenic p110α subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase

Jeffrey D. Carson; Glenn S. Van Aller; Ruth Lehr; Robert H. Sinnamon; Robert B. Kirkpatrick; Kurt R. Auger; Dashyant Dhanak; Robert A. Copeland; Richard R. Gontarek; Peter J. Tummino; Lusong Luo

The PIK3CA gene, encoding the p110α catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110α, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three ‘hot spot’ PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kα, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.


Molecular Cancer Therapeutics | 2009

GSK1070916, a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models

Mary Ann Hardwicke; Catherine A. Oleykowski; Ramona Plant; Jamin Wang; Qiaoyin Liao; Katherine G. Moss; Ken A. Newlander; Jerry L. Adams; Dashyant Dhanak; Jingsong Yang; Zhihong Lai; David Sutton; Denis R. Patrick

The protein kinases, Aurora A, B, and C have critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. GSK1070916, is a novel ATP competitive inhibitor that is highly potent and selective for Aurora B/C kinases. Human tumor cells treated with GSK1070916 show dose-dependent inhibition of phosphorylation on serine 10 of Histone H3, a substrate specific for Aurora B kinase. Moreover, GSK1070916 inhibits the proliferation of tumor cells with EC50 values of <10 nmol/L in over 100 cell lines spanning a broad range of tumor types. Although GSK1070916 has potent activity against proliferating cells, a dramatic shift in potency is observed in primary, nondividing, normal human vein endothelial cells, consistent with the proposed mechanism. We further determined that treated cells do not arrest in mitosis but instead fail to divide and become polyploid, ultimately leading to apoptosis. GSK1070916 shows dose-dependent inhibition of phosphorylation of an Aurora B–specific substrate in mice and consistent with its broad cellular activity, has antitumor effects in 10 human tumor xenograft models including breast, colon, lung, and two leukemia models. These results show that GSK1070916 is a potent Aurora B/C kinase inhibitor that has the potential for antitumor activity in a wide range of human cancers. [Mol Cancer Ther 2009;8(7):1808–17]


Biochemical Journal | 2009

Biochemical characterization of GSK1070916, a potent and selective inhibitor of Aurora B and Aurora C kinases with an extremely long residence time1.

Kelly Anderson; Zhihong Lai; Octerloney B. McDonald; J. Darren Stuart; Eldridge N. Nartey; Mary Ann Hardwicke; Ken Newlander; Dashyant Dhanak; Jerry L. Adams; Denis R. Patrick; Robert A. Copeland; Peter J. Tummino; Jingsong Yang

The Aurora kinases AurA, B and C are serine/threonine protein kinases that play essential roles in mitosis and cytokinesis. Among them, AurB is required for maintaining proper chromosome alignment, separation and segregation during mitosis, and regulating a number of critical processes involved in cytokinesis. AurB overexpression has been observed in a variety of cancer cell lines, and inhibition of AurB has been shown to induce tumour regression in mouse xenograft models. In the present study we report the enzymatic characterization of a potent and selective AurB/AurC inhibitor. GSK1070916 is a reversible and ATP-competitive inhibitor of the AurB-INCENP (inner centromere protein) enzyme. It selectively inhibits AurB-INCENP (K(i)*=0.38+/-0.29 nM) and AurC-INCENP (K(i)*=1.5+/-0.4 nM) over AurA-TPX2 (target protein for Xenopus kinesin-like protein 2) (K(i)=490+/-60 nM). Inhibition of AurB-INCENP and AurC-INCENP is time-dependent, with an enzyme-inhibitor dissociation half-life of >480 min and 270+/-28 min respectively. The extremely slow rate of dissociation from the AurB and AurC enzymes distinguishes GSK1070916 from two other Aurora inhibitors in the clinic, AZD1152 and VX-680 (also known as MK-0457).

Collaboration


Dive into the Dashyant Dhanak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge