Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dave Saint-Amour is active.

Publication


Featured researches published by Dave Saint-Amour.


Brain Research | 2008

Audio-visual integration of emotion expression.

Olivier Collignon; Simon Girard; Frédéric Gosselin; Sylvain Roy; Dave Saint-Amour; Maryse Lassonde; Franco Lepore

Regardless of the fact that emotions are usually recognized by combining facial and vocal expressions, the multisensory nature of affect perception has scarcely been investigated. In the present study, we show results of three experiments on multisensory perception of emotions using newly validated sets of dynamic visual and non-linguistic vocal clips of affect expressions. In Experiment 1, participants were required to categorize fear and disgust expressions displayed auditorily, visually, or using congruent or incongruent audio-visual stimuli. Results showed faster and more accurate categorisation in the bimodal congruent situation than in the unimodal conditions. In the incongruent situation, participant preferentially categorized the affective expression based on the visual modality, demonstrating a visual dominance in emotional processing. However, when the reliability of the visual stimuli was diminished, participants categorized incongruent bimodal stimuli preferentially via the auditory modality. These results demonstrate that visual dominance in affect perception does not occur in a rigid manner, but follows flexible situation-dependent rules. In Experiment 2, we requested the participants to pay attention to only one sensory modality at a time in order to test the putative mandatory nature of multisensory affective interactions. We observed that even if they were asked to ignore concurrent sensory information, the irrelevant information significantly affected the processing of the target. This observation was especially true when the target modality was less reliable. Altogether, these findings indicate that the perception of emotion expressions is a robust multisensory situation which follows rules that have been previously observed in other perceptual domains.


Neuropsychologia | 2010

Women process multisensory emotion expressions more efficiently than men

Olivier Collignon; Simon Girard; Frédéric Gosselin; Dave Saint-Amour; Franco Lepore; Maryse Lassonde

Despite claims in the popular press, experiments investigating whether female are more efficient than male observers at processing expression of emotions produced inconsistent findings. In the present study, participants were asked to categorize fear and disgust expressions displayed auditorily, visually, or audio-visually. Results revealed an advantage of women in all the conditions of stimulus presentation. We also observed more nonlinear probabilistic summation in the bimodal conditions in female than male observers, indicating greater neural integration of different sensory-emotional informations. These findings indicate robust differences between genders in the multisensory perception of emotion expression.


NeuroImage | 2011

Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness

Daniel Senkowski; Dave Saint-Amour; Marion Höfle; John J. Foxe

A major determinant of multisensory integration, derived from single-neuron studies in animals, is the principle of inverse effectiveness (IE), which describes the phenomenon whereby maximal multisensory response enhancements occur when the constituent unisensory stimuli are minimally effective in evoking responses. Human behavioral studies, which have shown that multisensory interactions are strongest when stimuli are low in intensity are in agreement with the IE principle, but the neurophysiologic basis for this finding is unknown. In this high-density electroencephalography (EEG) study, we examined effects of stimulus intensity on multisensory audiovisual processing in event-related potentials (ERPs) and response time (RT) facilitation in the bisensory redundant target effect (RTE). The RTE describes that RTs are faster for bisensory redundant targets than for the respective unisensory targets. Participants were presented with semantically meaningless unisensory auditory, unisensory visual and bisensory audiovisual stimuli of low, middle and high intensity, while they were instructed to make a speeded button response when a stimulus in either modality was presented. Behavioral data showed that the RTE exceeded predictions on the basis of probability summations of unisensory RTs, indicative of integrative multisensory processing, but only for low intensity stimuli. Paralleling this finding, multisensory interactions in short latency (40-60ms) ERPs with a left posterior and right anterior topography were found particularly for stimuli with low intensity. Our findings demonstrate that the IE principle is applicable to early multisensory processing in humans.


Brain | 2008

Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation.

Madeleine Fortin; Patrice Voss; Catherine Lord; Maryse Lassonde; Jens C. Pruessner; Dave Saint-Amour; Constant Rainville; Franco Lepore

In the absence of visual input, the question arises as to how complex spatial abilities develop and how the brain adapts to the absence of this modality. We explored navigational skills in both early and late blind individuals and structural differences in the hippocampus, a brain region well known to be involved in spatial processing. Thirty-eight participants were divided into three groups: early blind individuals (n = 12; loss of vision before 5 years of age; mean age 33.8 years), late blind individuals (n = 7; loss of vision after 14 years of age; mean age 39.9 years) and 19 sighted, blindfolded matched controls. Subjects undertook route learning and pointing tasks in a maze and a spatial layout task. Anatomical data was collected by MRI. Remarkably, we not only show that blind individuals possess superior navigational skills than controls on the route learning task, but we also show for the first time a significant volume increase of the hippocampus in blind individuals [F(1,36) = 6.314; P < or = 0.01; blind: mean = 4237.00 mm(3), SE = 107.53; sighted: mean = 3905.74 mm(3), SE = 76.27], irrespective of whether their blindness was congenital or acquired. Overall, our results shed new light not only on the construction of spatial concepts and the non-necessity of vision for its proper development, but also on the hippocampal plasticity observed in adult blind individuals who have to navigate in this space.


Neuroreport | 2000

Brain functional reorganization in early blind humans revealed by auditory event-related potentials.

Dave Saint-Amour; Marc E. Lavoie; Maryse Lassonde; Franco Lepore

Visually challenged individuals often compensate for their handicap by developing supra-normal abilities in their remaining sensory systems. Here, we examined the scalp distribution of components N1 and P3 of auditory evoked potentials during a sound localization task in four totally blind subjects who had previously shown better performance than sighted subjects. Both N1 and P3 waves peaked at their usual positions while blind and sighted individuals performed the task. However, in blind subjects these two components were also found to be robust over occipital regions while in sighted individuals this pattern was not seen. We conclude that deafferented posterior visual areas in blind individuals are recruited to carry out auditory functions, enabling these individuals to compensate for their lack of vision.


The American Journal of Clinical Nutrition | 2011

Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age

Olivier Boucher; Matthew J. Burden; Gina Muckle; Dave Saint-Amour; Pierre Ayotte; Eric Dewailly; Charles A. Nelson; Sandra W. Jacobson; Joseph L. Jacobson

BACKGROUND The beneficial effects of prenatal and early postnatal intakes of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on cognitive development during infancy are well recognized. However, few studies have examined the extent to which these benefits continue to be evident in childhood. OBJECTIVE The aim of this study was to examine the relation of n-3 PUFAs and seafood-contaminant intake with memory function in school-age children from a fish-eating community. DESIGN In a prospective, longitudinal study in Arctic Quebec, we assessed Inuit children (n = 154; mean age: 11.3 y) by using a continuous visual recognition task to measure 2 event-related potential components related to recognition memory processing: the FN400 and the late positive component (LPC). Children were also examined by using 2 well-established neurobehavioral assessments of memory: the Digit span forward from Wechsler Intelligence Scales for Children, 4th edition, and the California Verbal Learning Test-Childrens Version. RESULTS Repeated-measures analyses of variance revealed that children with higher cord plasma concentrations of docosahexaenoic acid (DHA), which is an important n-3 PUFA, had a shorter FN400 latency and a larger LPC amplitude; and higher plasma DHA concentrations at the time of testing were associated with increased FN400 amplitude. Cord DHA-related effects were observed regardless of seafood-contaminant amounts. Multiple regression analyses also showed positive associations between cord DHA concentrations and performance on neurobehavioral assessments of memory. CONCLUSION To our knowledge, this study provides the first neurophysiologic and neurobehavioral evidence of long-term beneficial effects of n-3 PUFA intake in utero on memory function in school-age children.


Cerebral Cortex | 2015

Severe Multisensory Speech Integration Deficits in High-Functioning School-Aged Children with Autism Spectrum Disorder (ASD) and Their Resolution During Early Adolescence

John J. Foxe; Sophie Molholm; Victor A. Del Bene; Hans-Peter Frey; Natalie Russo; Daniella Blanco; Dave Saint-Amour; Lars A. Ross

Under noisy listening conditions, visualizing a speakers articulations substantially improves speech intelligibility. This multisensory speech integration ability is crucial to effective communication, and the appropriate development of this capacity greatly impacts a childs ability to successfully navigate educational and social settings. Research shows that multisensory integration abilities continue developing late into childhood. The primary aim here was to track the development of these abilities in children with autism, since multisensory deficits are increasingly recognized as a component of the autism spectrum disorder (ASD) phenotype. The abilities of high-functioning ASD children (n = 84) to integrate seen and heard speech were assessed cross-sectionally, while environmental noise levels were systematically manipulated, comparing them with age-matched neurotypical children (n = 142). Severe integration deficits were uncovered in ASD, which were increasingly pronounced as background noise increased. These deficits were evident in school-aged ASD children (5-12 year olds), but were fully ameliorated in ASD children entering adolescence (13-15 year olds). The severity of multisensory deficits uncovered has important implications for educators and clinicians working in ASD. We consider the observation that the multisensory speech system recovers substantially in adolescence as an indication that it is likely amenable to intervention during earlier childhood, with potentially profound implications for the development of social communication abilities in ASD children.


Paediatric and Perinatal Epidemiology | 2013

Cohort Profile: The Maternal-Infant Research on Environmental Chemicals Research Platform

Tye E. Arbuckle; William D. Fraser; Mandy Fisher; Karelyn Davis; Chun Lei Liang; Nicole Lupien; Stéphanie Bastien; M.P. Vélez; Peter von Dadelszen; Denise G. Hemmings; Jingwei Wang; Michael Helewa; Shayne Taback; Mathew Sermer; Warren G. Foster; Greg Ross; Paul Fredette; Graeme N. Smith; Mark Walker; Roberta Shear; Linda Dodds; Adrienne S. Ettinger; Jean-Philippe Weber; Monique D'Amour; Melissa Legrand; Premkumari Kumarathasan; Renaud Vincent; Zhong-Cheng Luo; Robert W. Platt; Grant Mitchell

BACKGROUND The Maternal-Infant Research on Environmental Chemicals (MIREC) Study was established to obtain Canadian biomonitoring data for pregnant women and their infants, and to examine potential adverse health effects of prenatal exposure to priority environmental chemicals on pregnancy and infant health. METHODS Women were recruited during the first trimester from 10 sites across Canada and were followed through delivery. Questionnaires were administered during pregnancy and post-delivery to collect information on demographics, occupation, life style, medical history, environmental exposures and diet. Information on the pregnancy and the infant was abstracted from medical charts. Maternal blood, urine, hair and breast milk, as well as cord blood and infant meconium, were collected and analysed for an extensive list of environmental biomarkers and nutrients. Additional biospecimens were stored in the studys Biobank. The MIREC Research Platform encompasses the main cohort study, the Biobank and follow-up studies. RESULTS Of the 8716 women approached at early prenatal clinics, 5108 were eligible and 2001 agreed to participate (39%). MIREC participants tended to smoke less (5.9% vs. 10.5%), be older (mean 32.2 vs. 29.4 years) and have a higher education (62.3% vs. 35.1% with a university degree) than women giving birth in Canada. CONCLUSIONS The MIREC Study, while smaller in number of participants than several of the international cohort studies, has one of the most comprehensive datasets on prenatal exposure to multiple environmental chemicals. The biomonitoring data and biological specimen bank will make this research platform a significant resource for examining potential adverse health effects of prenatal exposure to environmental chemicals.


European Journal of Neuroscience | 2011

The development of multisensory speech perception continues into the late childhood years.

Lars A. Ross; Sophie Molholm; Daniella Blanco; Manuel Gomez-Ramirez; Dave Saint-Amour; John J. Foxe

Observing a speaker’s articulations substantially improves the intelligibility of spoken speech, especially under noisy listening conditions. This multisensory integration of speech inputs is crucial to effective communication. Appropriate development of this ability has major implications for children in classroom and social settings, and deficits in it have been linked to a number of neurodevelopmental disorders, especially autism. It is clear from structural imaging studies that there is a prolonged maturational course within regions of the perisylvian cortex that persists into late childhood, and these regions have been firmly established as being crucial to speech and language functions. Given this protracted maturational timeframe, we reasoned that multisensory speech processing might well show a similarly protracted developmental course. Previous work in adults has shown that audiovisual enhancement in word recognition is most apparent within a restricted range of signal‐to‐noise ratios (SNRs). Here, we investigated when these properties emerge during childhood by testing multisensory speech recognition abilities in typically developing children aged between 5 and 14 years, and comparing them with those of adults. By parametrically varying SNRs, we found that children benefited significantly less from observing visual articulations, displaying considerably less audiovisual enhancement. The findings suggest that improvement in the ability to recognize speech‐in‐noise and in audiovisual integration during speech perception continues quite late into the childhood years. The implication is that a considerable amount of multisensory learning remains to be achieved during the later schooling years, and that explicit efforts to accommodate this learning may well be warranted.


Environmental Health Perspectives | 2014

Neurobehavioral function in school-age children exposed to manganese in drinking water.

Youssef Oulhote; Donna Mergler; Benoit Barbeau; David C. Bellinger; Thérèse Bouffard; Marie-Ève Brodeur; Dave Saint-Amour; Melissa Legrand; Sébastien Sauvé; Maryse F. Bouchard

Background: Manganese neurotoxicity is well documented in individuals occupationally exposed to airborne particulates, but few data are available on risks from drinking-water exposure. Objective: We examined associations of exposure from concentrations of manganese in water and hair with memory, attention, motor function, and parent- and teacher-reported hyperactive behaviors. Methods: We recruited 375 children and measured manganese in home tap water (MnW) and hair (MnH). We estimated manganese intake from water ingestion. Using structural equation modeling, we estimated associations between neurobehavioral functions and MnH, MnW, and manganese intake from water. We evaluated exposure–response relationships using generalized additive models. Results: After adjusting for potential confounders, a 1-SD increase in log10 MnH was associated with a significant difference of –24% (95% CI: –36, –12%) SD in memory and –25% (95% CI: –41, –9%) SD in attention. The relations between log10 MnH and poorer memory and attention were linear. A 1-SD increase in log10 MnW was associated with a significant difference of –14% (95% CI: –24, –4%) SD in memory, and this relation was nonlinear, with a steeper decline in performance at MnW > 100 μg/L. A 1-SD increase in log10 manganese intake from water was associated with a significant difference of –11% (95% CI: –21, –0.4%) SD in motor function. The relation between log10 manganese intake and poorer motor function was linear. There was no significant association between manganese exposure and hyperactivity. Conclusion: Exposure to manganese in water was associated with poorer neurobehavioral performances in children, even at low levels commonly encountered in North America. Citation: Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Sauvé S, Bouchard MF. 2014. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122:1343–1350; http://dx.doi.org/10.1289/ehp.1307918

Collaboration


Dive into the Dave Saint-Amour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryse Lassonde

Université du Québec à Trois-Rivières

View shared research outputs
Top Co-Authors

Avatar

Franco Lepore

Université du Québec à Trois-Rivières

View shared research outputs
Top Co-Authors

Avatar

Mathieu Simard

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Foxe

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge