Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dave Speijer is active.

Publication


Featured researches published by Dave Speijer.


Organic and Biomolecular Chemistry | 2007

1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics

Victoria D. Bock; Dave Speijer; Henk Hiemstra; Jan H. van Maarseveen

Since the discovery of Cu(I)-catalysed click chemistry, the field of peptidomimetics has expanded to include 1,4-connected 1,2,3-triazoles as useful peptide bond isosteres. Here, we report the synthesis of triazole-containing analogues of the naturally occurring tyrosinase inhibitor cyclo-[Pro-Val-Pro-Tyr] and show that the analogues retain enzyme inhibitory activity, demonstrating the effectiveness of a 1,4-connected 1,2,3-triazole as a trans peptide bond isostere.


Genetics | 2007

Evolution of Mammalian Chitinase(-Like) Members of Family 18 Glycosyl Hydrolases

Anton P. Bussink; Dave Speijer; Johannes M. F. G. Aerts; Rolf G. Boot

Family 18 of glycosyl hydrolases encompasses chitinases and so-called chi-lectins lacking enzymatic activity due to amino acid substitutions in their active site. Both types of proteins widely occur in mammals although these organisms lack endogenous chitin. Their physiological function(s) as well as evolutionary relationships are still largely enigmatic. An overview of all family members is presented and their relationships are described. Molecular phylogenetic analyses suggest that both active chitinases (chitotriosidase and AMCase) result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. The homologous genes encoding chitinase(-like) proteins are clustered in two distinct loci that display a high degree of synteny among mammals. Despite the shared chromosomal location and high homology, individual genes have evolved independently. Orthologs are more closely related than paralogues, and calculated substitution rate ratios indicate that protein-coding sequences underwent purifying selection. Substantial gene specialization has occurred in time, allowing for tissue-specific expression of pH optimized chitinases and chi-lectins. Finally, several family 18 chitinase-like proteins are present only in certain lineages of mammals, exemplifying recent evolutionary events in the chitinase protein family.


Journal of Biological Chemistry | 2000

In Vivo Functional Analysis of the Human Mitochondrial DNA Polymerase POLG Expressed in Cultured Human Cells

Johannes N. Spelbrink; Janne M. Toivonen; Gerrit A.J. Hakkaart; Johanna M. Kurkela; Helen M. Cooper; Sanna K. Lehtinen; Nicolas Lecrenier; Jaap Willem Back; Dave Speijer; Françoise Foury; Howard T. Jacobs

The human gene POLG encodes the catalytic subunit of mitochondrial DNA polymerase, but its precise roles in mtDNA metabolism in vivo have not hitherto been documented. By expressing POLG fusion proteins in cultured human cells, we show that the enzyme is targeted to mitochondria, where the Myc epitope-tagged POLG is catalytically active as a DNA polymerase. Long-term culture of cells expressing wild-type POLG-myc revealed no alterations in mitochondrial function. Expression of POLG-myc mutants created dominant phenotypes demonstrating important roles for the protein in mtDNA maintenance and integrity. The D198A amino acid replacement abolished detectable 3′-5′ (proofreading) exonuclease activity and led to the accumulation of a significant load (1:1700) of mtDNA point mutations during 3 months of continuous culture. Further culture resulted in the selection of cells with an inactivated mutator polymerase, and a reduced mutation load in mtDNA. Transient expression of POLG-myc variants D890N or D1135A inhibited endogenous mitochondrial DNA polymerase activity and caused mtDNA depletion. Deletion of the POLG CAG repeat did not affect enzymatic properties, but modestly up-regulated expression. These findings demonstrate that POLG exonuclease and polymerase functions are essential for faithful mtDNA maintenance in vivo, and indicate the importance of key residues for these activities.


Molecular Plant Pathology | 2007

The mixed xylem sap proteome of Fusarium oxysporum‐infected tomato plants

Petra M. Houterman; Dave Speijer; Henk L. Dekker; Chris G. de Koster; Ben J. C. Cornelissen; Martijn Rep

SUMMARY Secreted proteins are known to play decisive roles in plant-fungus interactions. To study the molecular details of the interaction between the xylem-colonizing, plant-pathogenic fungus Fusarium oxysporum and tomato, the composition of the xylem sap proteome of infected tomato plants was investigated and compared with that of healthy plants. Two-dimensional gel separation and mass spectrometry yielded peptide masses and peptide sequences of 33 different proteins. Despite the absence of complete genome sequences of either tomato or F. oxysporum, 21 proteins were identified as tomato proteins and seven as fungal proteins. Thirteen of the tomato proteins were specific for infected plants. Sixteen tomato proteins were found in xylem sap for the first time, four of which were identified based on matches to expressed sequences only. Coding sequences for new proteins from F. oxysporum were identified through either direct matching to a database sequence, matching of peptide sequences to genome or expressed sequence tag databases of other Fusarium species, or PCR with degenerate primers on cDNA derived from infected plants followed by screening of a F. oxysporum BAC library. Together, these findings provide an excellent basis for further exploration of the interaction between xylem-colonizing pathogens and their hosts.


Plant Physiology | 2002

Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

Martijn Rep; Henk L. Dekker; Jack H. Vossen; Albert D. de Boer; Petra M. Houterman; Dave Speijer; Jaap Willem Back; Chris G. de Koster; Ben J. C. Cornelissen

The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during compatible or incompatible interactions. A new member of the PR-5 family was identified that accumulated early in both types of interaction. Other pathogenesis-related proteins appeared in compatible interactions only, concomitantly with disease development. This study demonstrates the feasibility of using proteomics for the identification of known and novel proteins in xylem sap, and provides insights into plant-pathogen interactions in vascular wilt diseases.


Blood | 2011

Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response.

Nick Dekker; Laura van Dussen; Carla E. M. Hollak; Herman S. Overkleeft; Saskia Scheij; Karen Ghauharali; Mariëlle J. van Breemen; Maria J. Ferraz; Johanna E. M. Groener; Mario Maas; Frits A. Wijburg; Dave Speijer; Anna Tylki-Szymańska; Pramod K. Mistry; Rolf G. Boot; Johannes M. F. G. Aerts

Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, leads to prominent glucosylceramide accumulation in lysosomes of tissue macrophages (Gaucher cells). Here we show glucosylsphingosine, the deacylated form of glucosylceramide, to be markedly increased in plasma of symptomatic nonneuronopathic (type 1) Gaucher patients (n = 64, median = 230.7 nM, range 15.6-1035.2 nM; normal (n = 28): median 1.3 nM, range 0.8-2.7 nM). The method developed for mass spectrometric quantification of plasma glucosylsphingosine is sensitive and robust. Plasma glucosylsphingosine levels correlate with established plasma markers of Gaucher cells, chitotriosidase (ρ = 0.66) and CCL18 (ρ = 0.40). Treatment of Gaucher disease patients by supplementing macrophages with mannose-receptor targeted recombinant glucocerebrosidase results in glucosylsphingosine reduction, similar to protein markers of Gaucher cells. Since macrophages prominently accumulate the lysoglycosphingolipid on glucocerebrosidase inactivation, Gaucher cells seem a major source of the elevated plasma glucosylsphingosine. Our findings show that plasma glucosylsphingosine can qualify as a biomarker for type 1 Gaucher disease, but that further investigations are warranted regarding its relationship with clinical manifestations of Gaucher disease.


Journal of Biological Chemistry | 1998

Trypanosoma brucei TBRGG1, a mitochondrial oligo(U)-binding protein that co-localizes with an in vitro RNA editing activity.

Luc Vanhamme; David Perez-Morga; Christian Marchal; Dave Speijer; Laurence Lambert; Maurice Geuskens; Sylvie Alexandre; Naima Ismaili; Ulrich Göringer; Rob Benne; Etienne Pays

We report the characterization of aTrypanosoma brucei 75-kDa protein of the RGG (Arg-Gly-Gly) type, termed TBRGG1. Dicistronic and monocistronic transcripts of theTBRGG1 gene were produced by both alternative splicing and polyadenylation. TBRGG1 was found in two or three forms that differ in their electrophoretic mobility on SDS-polyacrylamide gel electrophoresis gels, one of which was more abundant in the procyclic form of the parasite. TBRGG1 was localized to the mitochondrion and appeared to be more abundant in bloodstream intermediate and stumpy forms in which the mitochondrion reactivates and during the procyclic stage, which possesses a fully functional mitochondrion. This protein was characterized to display oligo(U) binding characteristics and was found to co-localize with an in vitro RNA editing activity in a sedimentation analysis. TBRGG1 most likely corresponds to the 83-kDa oligo(U)-binding protein previously identified by UV cross-linking of guide RNA to mitochondrial lysates (Leegwater, P., Speijer, D., and Benne, R. (1995) Eur. J. Biochem.227, 780–786).


Journal of Virology | 2008

Proteomic Studies Reveal Coordinated Changes in T-Cell Expression Patterns upon Infection with Human Immunodeficiency Virus Type 1

Jeffrey H. Ringrose; Rienk E. Jeeninga; Ben Berkhout; Dave Speijer

ABSTRACT We performed an extensive two-dimensional differential in-gel electrophoresis proteomic analysis of the cellular changes in human T cells upon human immunodeficiency virus type 1 (HIV-1) infection. We detected 2,000 protein spots, 15% of which were differentially expressed at peak infection. A total of 93 proteins that changed in relative abundance were identified. Of these, 27 were found to be significantly downregulated and 66 were upregulated at peak HIV infection. Early in infection, only a small group of proteins was changed. A clear and consistent program of metabolic rerouting could be seen, in which glycolysis was downregulated and mitochondrial oxidation enhanced. Proteins that participate in apoptotic signaling were also significantly influenced. Apart from these changes, the virus also strongly influenced levels of proteins involved in intracellular transport. These and other results are discussed in light of previous microarray and proteomic studies regarding the impact of HIV-1 infection on cellular mRNA and protein content.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

Dave Speijer; Julius Lukeš; Marek Eliáš

Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to protists. We present results of phylogenetically extended searches for homologs of two proteins functioning in cell and nuclear fusion, respectively (HAP2 and GEX1), providing indirect evidence for these processes in several eukaryotic lineages where sex has not been observed yet. We argue that (i) the debate on the relative significance of sex and clonality in eukaryotes is confounded by not appropriately distinguishing multicellular and unicellular organisms; (ii) eukaryotic sex is extremely widespread and already present in the last eukaryotic common ancestor; and (iii) the general mode of existence of eukaryotes is best described by clonally propagating cell lines with episodic sex triggered by external or internal clues. However, important questions concern the relative longevity of true clonal species (i.e., species not able to return to sexual procreation anymore). Long-lived clonal species seem strikingly rare. We analyze their properties in the light of meiotic sex development from existing prokaryotic repair mechanisms. Based on these considerations, we speculate that eukaryotic sex likely developed as a cellular survival strategy, possibly in the context of internal reactive oxygen species stress generated by a (proto) mitochondrion. Thus, in the context of the symbiogenic model of eukaryotic origin, sex might directly result from the very evolutionary mode by which eukaryotic cells arose.


Antimicrobial Agents and Chemotherapy | 2006

Bile Salt-Stimulated Lipase from Human Milk Binds DC-SIGN and Inhibits Human Immunodeficiency Virus Type 1 Transfer to CD4^+ T Cells

Marloes A. Naarding; Annette M. G. Dirac; Irene S. Ludwig; Dave Speijer; Susanne Lindquist; Eva-Lotta Vestman; Martijn J. Stax; Teunis B. H. Geijtenbeek; Georgios Pollakis; Olle Hernell; William A. Paxton

ABSTRACT A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs and a subset of B cells. More specifically, the interaction of the gp120 envelope protein of HIV-1 with DC-SIGN can facilitate the transfer of virus to CD4+ T lymphocytes in trans and enhance infection. We have previously demonstrated that a multimeric LeX component in human milk binds to DC-SIGN, preventing HIV-1 from interacting with this receptor. Biochemical analysis reveals that the compound is heat resistant, trypsin sensitive, and larger than 100 kDa, indicating a specific glycoprotein as the inhibitory compound. By testing human milk from three different mothers, we found the levels of DC-SIGN binding and viral inhibition to vary between samples. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and matrix-assisted laser desorption ionization analysis, we identified bile salt-stimulated lipase (BSSL), a Lewis X (LeX)-containing glycoprotein found in human milk, to be the major variant protein between the samples. BSSL isolated from human milk bound to DC-SIGN and inhibited the transfer of HIV-1 to CD4+ T lymphocytes. Two BSSL isoforms isolated from the same human milk sample showed differences in DC-SIGN binding, illustrating that alterations in the BSSL forms explain the differences observed. These results indicate that variations in BSSL lead to alterations in LeX expression by the protein, which subsequently alters the DC-SIGN binding capacity and the inhibitory effect on HIV-1 transfer. Identifying the specific molecular interaction between the different forms may aid in the future design of antimicrobial agents.

Collaboration


Dive into the Dave Speijer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henk L. Dekker

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Benne

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Berkhout

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge