Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Day is active.

Publication


Featured researches published by David A. Day.


The Plant Cell | 2004

Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins

Joshua L. Heazlewood; Julian Tonti-Filippini; Alexander M. Gout; David A. Day; James Whelan; A. Harvey Millar

A novel insight into Arabidopsis mitochondrial function was revealed from a large experimental proteome derived by liquid chromatography–tandem mass spectrometry. Within the experimental set of 416 identified proteins, a significant number of low-abundance proteins involved in DNA synthesis, transcriptional regulation, protein complex assembly, and cellular signaling were discovered. Nearly 20% of the experimentally identified proteins are of unknown function, suggesting a wealth of undiscovered mitochondrial functions in plants. Only approximately half of the experimental set is predicted to be mitochondrial by targeting prediction programs, allowing an assessment of the benefits and limitations of these programs in determining plant mitochondrial proteomes. Maps of putative orthology networks between yeast, human, and Arabidopsis mitochondrial proteomes and the Rickettsia prowazekii proteome provide detailed insights into the divergence of the plant mitochondrial proteome from those of other eukaryotes. These show a clear set of putative cross-species orthologs in the core metabolic functions of mitochondria, whereas considerable diversity exists in many signaling and regulatory functions.


Annual Review of Plant Biology | 2011

Organization and Regulation of Mitochondrial Respiration in Plants

A. Harvey Millar; James Whelan; Kathleen L. Soole; David A. Day

Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation. We describe recent advances in our understanding of the mitochondrial respiratory machinery of cells, including the presence of a classical oxidative phosphorylation system linked to the cytosol by transporters, discussed alongside nonphosphorylating (and, therefore, non-energy conserving) bypasses that alter the efficiency of ATP synthesis and play a role in oxidative stress responses in plants. We consider respiratory regulation in the context of the contrasting roles mitochondria play in different tissues, from photosynthetic leaves to nutrient-acquiring roots. We focus on the molecular nature of this regulation at transcriptional and post-transcriptional levels that allow the respiratory apparatus of plants to help shape organ development and the response of plants to environmental stress. We highlight the challenges for future research considering spatial and temporal changes of respiration in response to changing climatic conditions.


FEBS Letters | 1993

Organic acid activation of the alterNatlve oxidase of plant mitochondria

A. Harvey Millar; Joseph T. Wiskich; James Whelan; David A. Day

Alternative oxidase activity (oxygen uptake in the presence of KCN, antimycin or myxothiazol) in mitochondria isolated from the roots of soybean seedlings was very slow, even with succinate as substrate. This activity was stimulated substantially (100–400%) by the addition of pyruvate, with half maximal stimulation occurring at 0.1 mM pyruvate. Mitochondria from soybean shoots displayed high alternative oxidase activity with succinate and malate as substrates but lower activity with exogenous NADH; addition of pyruvate stimulated the activity with NADH up to that seen with succinate. This stimulation of cyanide‐insensitive NADH oxidation was seen also with mitochondria from other species. Hydroxypyruvate and oxoglutarate could substitute for pyruvate, although higher concentrations were required to achieve maximum stimulation. Pyruvate stimulation of cyanide‐insensitive oxygen uptake was observed with exogenous quinols as substrates, with sub‐mitochondrial particles, and in the presence of the pyruvate transport inhibitor, cyanohydroxycinnamic acid, but was not observed with detergent‐solubilised mitochondria. It is suggested that pyruvate acts allosterically on the alternatlve oxidase to stimulate its activity. The implications of these findings for respiration in vivo are discussed.


Plant Molecular Biology | 2005

Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana

Rachel Clifton; Ryan Lister; Karen L. Parker; Pia G. Sappl; Dina Elhafez; A. Harvey Millar; David A. Day; James Whelan

Plant mitochondria contain non-phosphorylating bypasses of the respiratory chain, catalysed by the alternative oxidase (AOX) and alternative NADH dehydrogenases (NDH), as well as uncoupling (UCP) protein. Each of these components either circumvents or short-circuits proton translocation pathways, and each is encoded by a small gene family in Arabidopsis. Whole genome microarray experiments were performed with suspension cell cultures to examine the effects of various 3 h treatments designed to induce abiotic stress. The expression of over 60 genes encoding components of the classical, phosphorylating respiratory chain and tricarboxylic acid cycle remained largely constant when cells were subjected to a broad range of abiotic stresses, but expression of the alternative components responded differentially to the various treatments. In detailed time-course quantitative PCR analysis, specific members of both AOX and NDH gene families displayed coordinated responses to treatments. In particular, the co-expression of AOX1a and NDB2 observed under a number of treatments suggested co-regulation that may be directed by common sequence elements arranged hierarchically in the upstream promoter regions of these genes. A series of treatment sets were identified, representing the response of specific AOX and NDH genes to mitochondrial inhibition, plastid inhibition and abiotic stresses. These treatment sets emphasise the multiplicity of pathways affecting alternative electron transport components in plants.


Molecular & Cellular Proteomics | 2005

Differential Impact of Environmental Stresses on the Pea Mitochondrial Proteome

Nicolas L. Taylor; Joshua L. Heazlewood; David A. Day; A. Harvey Millar

Exposure to adverse environmental conditions causes oxidative stress in many organisms, leading either to disease and debilitation or to response and tolerance. Mitochondria are a key site of oxidative stress and of cellular response and play important roles in cell survival. We analyzed the response of mitochondria in pea (Pisum sativum) plants to the common stresses associated with drought, cold, and herbicides. These treatments all altered photosynthetic and respiratory rates of pea leaves to various extents, but only herbicides significantly increased lipid peroxidation product accumulation. Mitochondria isolated from the stressed pea plants maintained their electron transport chain activity, but changes were evident in the abundance of uncoupling proteins, non-phosphorylating respiratory pathways, and oxidative modification of lipoic acid moieties on mitochondrial proteins. These data suggest that herbicide treatment placed a severe oxidative stress on mitochondria, whereas chilling and particularly drought were milder stresses. Detailed analysis of the soluble proteome of mitochondria by gel electrophoresis and mass spectrometry revealed differential degradation of key matrix enzymes during treatments with chilling being significantly more damaging than drought. Differential induction of heat shock proteins and specific losses of other proteins illustrated the diversity of response to these stresses at the protein level. Cross-species matching was required for mass spectrometry identification of nine proteins because only a limited number of pea cDNAs have been sequenced, and the full pea genome is not available. Blue-native separation of intact respiratory chain complexes revealed little if any change in response to environmental stresses. Together these data suggest that although many of the molecular events identified by chemical stresses of mitochondria from a range of model eukaryotes are also apparent during environmental stress of plants, their extent and significance can vary substantially.


Plant Physiology | 2005

Effects of Water Stress on Respiration in Soybean Leaves

Miquel Ribas-Carbo; Nicolas L. Taylor; Larry Giles; Sílvia Busquets; Patrick M. Finnegan; David A. Day; Hans Lambers; Hipólito Medrano; Joseph A. Berry; Jaume Flexas

The effect of water stress on respiration and mitochondrial electron transport has been studied in soybean (Glycine max) leaves, using the oxygen-isotope-fractionation technique. Treatments with three levels of water stress were applied by irrigation to replace 100%, 50%, and 0% of daily water use by transpiration. The levels of water stress were characterized in terms of light-saturated stomatal conductance (gs): well irrigated (gs > 0.2 mol H2O m−2 s−1), mildly water stressed (gs between 0.1 and 0.2 mol H2O m−2 s−1), and severely water stressed (gs < 0.1 mol H2O m−2 s−1). Although net photosynthesis decreased by 40% and 70% under mild and severe water stress, respectively, the total respiratory oxygen uptake (Vt) was not significantly different at any water-stress level. However, severe water stress caused a significant shift of electrons from the cytochrome to the alternative pathway. The electron partitioning through the alternative pathway increased from 10% to 12% under well-watered or mild water-stress conditions to near 40% under severe water stress. Consequently, the calculated rate of mitochondrial ATP synthesis decreased by 32% under severe water stress. Unlike many other stresses, water stress did not affect the levels of mitochondrial alternative oxidase protein. This suggests a biochemical regulation (other than protein synthesis) that causes this mitochondrial electron shift.


Plant Physiology | 2004

Salicylic Acid Is an Uncoupler and Inhibitor of Mitochondrial Electron Transport

Christel Norman; Katharine A. Howell; A. Harvey Millar; James Whelan; David A. Day

The effect of salicylic acid (SA) on respiration and mitochondrial function was examined in tobacco (Nicotiana tabacum) suspension cell cultures in the range of 0.01 to 5 mm. Cells rapidly accumulated SA up to 10-fold of the externally applied concentrations. At the lower concentrations, SA accumulation was transitory. When applied at 0.1 mm or less, SA stimulated respiration of whole cells and isolated mitochondria in the absence of added ADP, indicating uncoupling of respiration. However, at higher concentrations, respiration was severely inhibited. Measurements of ubiquinone redox poise in isolated mitochondria suggested that SA blocked electron flow from the substrate dehydrogenases to the ubiquinone pool. This inhibition could be at least partially reversed by re-isolating the mitochondria. Two active analogs of SA, benzoic acid and acetyl-SA, had the same effect as SA on isolated tobacco mitochondria, whereas the inactive p-hydroxybenzoic acid was without effect at the same concentration. SA induced an increase in Aox protein levels in cell suspensions, and this was correlated with an increase in Aox1 transcript abundance. However, when applied at 0.1 mm, this induction was transient and disappeared as SA levels in the cells declined. SA at 0.1 mm also increased the expression of other SA-responsive genes, and this induction was dependent on active mitochondria. The results indicate that SA is both an uncoupler and an inhibitor of mitochondrial electron transport and suggest that this underlies the induction of some genes by SA. The possible implications of this for the interpretation of SA action in plants are discussed.


FEBS Letters | 1996

Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria.

A. Harvey Millar; David A. Day

Oxygen consumption via the cytochrome pathway in isolated soybean (Glycine max [L.] Merr.) cotyledon mitochondria was inhibited by nitric oxide (NO) while respiration via the cyanide‐insensitive alternative oxidase was not significantly affected. Inhibition of cytochrome pathway activity was rapidly reversible upon depletion of the added NO. NO production was also detected in solutions of NaNO2 plus ascorbate and the extent of cytochrome pathway inhibition was dependent on the NO2 − concentration. Little inhibition of alternative pathway respiration was observed under similar conditions. The alternative oxidase may play a role in nitric oxide tolerance in higher plants and in organisms such as trypanosomes which contain a plant‐like alternative oxidase.


Plant Physiology | 1995

Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation)

Greg C. Vanlerberghe; David A. Day; Joseph T. Wiskich; A. E. Vanlerberghe; Lee McIntosh

Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.


Plant Physiology | 2002

Molecular Distinction between Alternative Oxidase from Monocots and Dicots

Michael J. Considine; Ruth Holtzapffel; David A. Day; James Whelan; A. Harvey Millar

The alternative oxidase (Aox) is encoded in two discrete gene subfamilies in higher plants. Aox1 is most widely known for its induction by stress stimuli in many tissues and is present in both monocot and eudicot plant species. Aox2, on the other hand, is usually constitutive or developmentally

Collaboration


Dive into the David A. Day's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Harvey Millar

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick M. Finnegan

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Hans Lambers

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne Whitehead

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Nicolas L. Taylor

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

A. H. Millar

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge