Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Dougan is active.

Publication


Featured researches published by David A. Dougan.


Cell | 2004

Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB

Jimena Weibezahn; Peter Tessarz; Christian Schlieker; Regina Zahn; Zeljka Maglica; Sukyeong Lee; Hanswalter Zentgraf; Eilika Weber-Ban; David A. Dougan; Francis T.F. Tsai; Axel Mogk; Bernd Bukau

Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.


Molecular Cell | 2002

ClpS, a substrate modulator of the ClpAP machine.

David A. Dougan; Brian G Reid; Arthur L. Horwich; Bernd Bukau

In the bacterial cytosol, ATP-dependent protein degradation is performed by several different chaperone-protease pairs, including ClpAP. The mechanism by which these machines specifically recognize substrates remains unclear. Here, we report the identification of a ClpA cofactor from Escherichia coli, ClpS, which directly influences the ClpAP machine by binding to the N-terminal domain of the chaperone ClpA. The degradation of ClpAP substrates, both SsrA-tagged proteins and ClpA itself, is specifically inhibited by ClpS. In contrast, ClpS enhanced ClpA recognition of two heat-aggregated proteins in vitro and, consequently, the ClpAP-mediated disaggregation and degradation of these substrates. We conclude that ClpS modifies ClpA substrate specificity, potentially redirecting degradation by ClpAP toward aggregated proteins.


FEBS Letters | 2002

AAA+ proteins and substrate recognition, it all depends on their partner in crime.

David A. Dougan; Axel Mogk; Kornelius Zeth; Kürşad Turgay; Bernd Bukau

Members of the AAA+ superfamily have been identified in all organisms studied to date. They are involved in a wide range of cellular events. In bacteria, representatives of this superfamily are involved in functions as diverse as transcription and protein degradation and play an important role in the protein quality control network. Often they employ a common mechanism to mediate an ATP‐dependent unfolding/disassembly of protein–protein or DNA–protein complexes. In an increasing number of examples it appears that the activities of these AAA+ proteins may be modulated by a group of otherwise unrelated proteins, called adaptor proteins. These usually small proteins specifically modify the substrate recognition of their AAA+ partner protein. The occurrence of such adaptor proteins are widespread; representatives have been identified not only in Escherichia coli but also in Bacillus subtilis, not to mention yeast and other eukaryotic organisms. Interestingly, from the currently known examples, it appears that the N domain of AAA+ proteins (the most divergent region of the protein within the family) provides a common platform for the recognition of these diverse adaptor proteins. Finally, the use of adaptor proteins to modulate AAA+ activity is, in some cases, an elegant way to redirect the activity of an AAA+ protein towards a particular substrate without necessarily affecting other activities of that AAA+ protein while, in other cases, the adaptor protein triggers a complete switch in AAA+ activity.


Nature | 2006

ClpS is an essential component of the N-end rule pathway in Escherichia coli.

Annette Erbse; Ronny Schmidt; T. Bornemann; Jens Schneider-Mergener; Axel Mogk; Regina Zahn; David A. Dougan; Bernd Bukau

The N-end rule states that the half-life of a protein is determined by the nature of its amino-terminal residue. Eukaryotes and prokaryotes use N-terminal destabilizing residues as a signal to target proteins for degradation by the N-end rule pathway. In eukaryotes an E3 ligase, N-recognin, recognizes N-end rule substrates and mediates their ubiquitination and degradation by the proteasome. In Escherichia coli, N-end rule substrates are degraded by the AAA + chaperone ClpA in complex with the ClpP peptidase (ClpAP). Little is known of the molecular mechanism by which N-end rule substrates are initially selected for proteolysis. Here we report that the ClpAP-specific adaptor, ClpS, is essential for degradation of N-end rule substrates by ClpAP in bacteria. ClpS binds directly to N-terminal destabilizing residues through its substrate-binding site distal to the ClpS–ClpA interface, and targets these substrates to ClpAP for degradation. Degradation by the N-end rule pathway is more complex than anticipated and several other features are involved, including a net positive charge near the N terminus and an unstructured region between the N-terminal signal and the folded protein substrate. Through interaction with this signal, ClpS converts the ClpAP machine into a protease with exquisitely defined specificity, ideally suited to regulatory proteolysis.


Nature Reviews Microbiology | 2009

Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases

Janine Kirstein; Noël Molière; David A. Dougan; Kürşad Turgay

Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.


Cellular and Molecular Life Sciences | 2002

Protein folding and degradation in bacteria:¶To degrade or not to degrade? That is the question

David A. Dougan; Axel Mogk; Bernd Bukau

Abstract. In Escherichia coli protein quality control is carried out by a protein network, comprising chaperones and proteases. Central to this network are two protein families, the AAA+ and the Hsp70 family. The major Hsp70 chaperone, DnaK, efficiently prevents protein aggregation and supports the refolding of damaged proteins. In a special case, DnaK, together with the assistance of the AAA+ protein ClpB, can also refold aggregated proteins. Other Hsp70 systems have more specialized functions in the cell, for instance HscA appears to be involved in the assembly of Fe/S proteins. In contrast to ClpB, many AAA+ proteins associate with a peptidase to form proteolytic machines which remove irreversibly damaged proteins from the cellular pool. The AAA+ component of these proteolytic machines drives protein degradation. They are required not only for recognition of the substrate but also for substrate unfolding and translocation into the proteolytic chamber. In many cases, specific adaptor proteins modify the substrate binding properties of AAA+ proteins. While chaperones and proteases do not appear to directly cooperate with each other, both systems appear to be necessary for proper functioning of the cell and can, at least in part, substitute for one another.


The EMBO Journal | 2006

Adaptor protein controlled oligomerization activates the AAA+ protein ClpC

Janine Kirstein; Tilman Schlothauer; David A. Dougan; Hauke Lilie; Gilbert Tischendorf; Axel Mogk; Bernd Bukau; Kürşad Turgay

The AAA+ protein ClpC is not only involved in the removal of misfolded and aggregated proteins but also controls, through regulated proteolysis, key steps of several developmental processes in the Gram‐positive bacterium Bacillus subtilis. In contrast to other AAA+ proteins, ClpC is unable to mediate these processes without an adaptor protein like MecA. Here, we demonstrate that the general activation of ClpC is based upon the ability of MecA to participate in the assembly of an active and substrate‐recognizing higher oligomer consisting of ClpC and the adaptor protein, which is a prerequisite for all activities of this AAA+ protein. Using hybrid proteins of ClpA and ClpC, we identified the N‐terminal and the Linker domain of the first AAA+ domain of ClpC as the essential MecA interaction sites. This new adaptor‐mediated mechanism adds another layer of control to the regulation of the biological activity of AAA+ proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2003

MecA, an adaptor protein necessary for ClpC chaperone activity

Tilman Schlothauer; Axel Mogk; David A. Dougan; Bernd Bukau; Kürşad Turgay

ClpC of Bacillus subtilis is an ATP-dependent HSP100/Clp protein involved in general stress survival. A complex of ClpC with the protease ClpP and the adaptor protein MecA also controls competence development by regulated proteolysis of the transcription factor ComK. We investigated the in vitro chaperone activity of ClpC and found that the presence of MecA was crucial for the major chaperone activities of ClpC. In particular, MecA enabled ClpC to solubilize and refold aggregated proteins. Finally, in the presence of ClpP, MecA allowed the ClpC-dependent degradation of unfolded or heat-aggregated proteins. This study demonstrates that adaptor proteins like MecA through interaction with their cognate ClpC proteins can have a dual role in the protein quality-control network by rescuing, or together with ClpP, by degrading, aggregated proteins. MecA can thereby coordinate substrate targeting with ClpC activation, adding another layer to the regulation of HSP100/Clp protein activity.


Nature Structural & Molecular Biology | 2002

Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA

Kornelius Zeth; Raimond B. G. Ravelli; Klaus Paal; Stephen Cusack; Bernd Bukau; David A. Dougan

In Escherichia coli, protein degradation is performed by several proteolytic machines, including ClpAP. Generally, the substrate specificity of these machines is determined by chaperone components, such as ClpA. In some cases, however, the specificity is modified by adaptor proteins, such as ClpS. Here we report the 2.5 Å resolution crystal structure of ClpS in complex with the N-terminal domain of ClpA. Using mutagenesis, we demonstrate that two contact residues (Glu79 and Lys 84) are essential not only for ClpAS complex formation but also for ClpAPS-mediated substrate degradation. The corresponding residues are absent in the chaperone ClpB, providing a structural rationale for the unique specificity shown by ClpS despite the high overall similarity between ClpA and ClpB. To determine the location of ClpS within the ClpA hexamer, we modeled the N-terminal domain of ClpA onto a structurally defined, homologous AAA+ protein. From this model, we proposed a molecular mechanism to explain the ClpS-mediated switch in ClpA substrate specificity.


Journal of Biological Chemistry | 2002

Insertion and Assembly of Human Tom7 into the Preprotein Translocase Complex of the Outer Mitochondrial Membrane

Amelia J. Johnston; Joan Hoogenraad; David A. Dougan; Kaye N. Truscott; Masato Yano; Masataka Mori; Nicholas J. Hoogenraad; Michael T. Ryan

Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an ∼120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable ∼380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.

Collaboration


Dive into the David A. Dougan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Bukau

Humboldt State University

View shared research outputs
Top Co-Authors

Avatar

Axel Mogk

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge