David A. Engler
Houston Methodist Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Engler.
Journal of Molecular Cell Biology | 2012
Mianen Sun; Xiaojing Guo; Xiaolong Qian; Haibo Wang; Chunying Yang; Kathryn L. Brinkman; Monica Serrano-Gonzalez; Richard S. Jope; Binhua Zhou; David A. Engler; Ming Zhan; Stephen T. C. Wong; Li Fu; Bo Xu
The DNA damage response (DDR) is critical for the maintenance of genetic stability and serves as an anti-cancer barrier during early tumorigenesis. However, the role of the DDR in tumor progression and metastasis is less known. Here, we demonstrate that the ATM kinase, one of the critical DDR elements, is hyperactive in late stage breast tumor tissues with lymph-node metastasis and this hyperactivity correlates with elevated expression of the epithelial-mesenchymal transition marker, Snail. At the molecular level, we demonstrate that ATM regulates Snail stabilization by phosphorylation on Serine-100. Using mass spectrometry, we identified HSP90 as a critical binding protein of Snail in response to DNA damage. HSP90 binds to and stabilizes phosphorylated Snail. We further provide in vitro and in vivo evidence that activation of ATM-mediated Snail phosphorylation promotes tumor invasion and metastasis. Finally, we demonstrate that Snail Serine-100 phosphorylation is elevated in breast cancer tissues with lymph-node metastasis, indicating clinical significance of the ATM-Snail pathway. Together, our findings provide strong evidence that the ATM-Snail pathway promotes tumor metastasis, highlighting a previously undescribed role of the DDR in tumor invasion and metastasis.
Current Drug Targets | 2014
Claudia Corbo; Alessandro Parodi; Michael Evangelopoulos; David A. Engler; Risë K. Matsunami; Anthony C. Engler; Roberto Molinaro; Shilpa Scaria; F. Salvatore; Ennio Tasciotti
Current delivery platforms are typically designed for prolonged circulation that favors superior accumulation of the payload in the targeted tissue. The design of efficient surface modifications determines both a longer circulation time and targeting abilities of particles. The optimization of synthesis protocols to efficiently combine targeting molecules and elements that allow for an increased circulation time can be challenging and almost impossible when several functional elements are needed. On the other hand, in the last decade, the development of bioinspired technologies was proposed as a new approach with which to increase particle safety, biocompatibility and targeting, while maintaining the synthesis protocols simple and reproducible. Recently, we developed a new drug delivery system inspired by the biology of immune cells called leukolike vector (LLV) and formed by a nanoporous silicon core and a shell derived from the leucocyte cell membrane. The goal of this study is to investigate the protein content of the LLV. Here we report the proteomic profiling of the LLV and demonstrate that our approach can be used to modify the surface of synthetic particles with more than 150 leukocyte membrane associated proteins that determine particle safety, circulation time and targeting abilities towards inflamed endothelium.
Pure and Applied Chemistry | 2011
Liang-Yin Ke; David A. Engler; Jonathan Lu; Risë K. Matsunami; Hua-Chen Chan; Guei-Jane Wang; Chao-Yuh Yang; Jan-Gowth Chang; Chu-Huang Chen
Anion-exchange chromatography resolves human plasma low-density lipoprotein (LDL) into 5 subfractions, with increasing negative surface charge in the direction of L1 to L5. Unlike the harmless L1 to L4, the exclusively atherogenic L5 is rejected by the normal LDL receptor (LDLR) but endocytosed into vascular endothelial cells (ECs) through the lectin-like oxidized LDL receptor-1 (LOX-1). Analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis showed that the protein framework of L1 was composed mainly of apolipoprotein (apo) B100, with an isoelectric point (pI) of 6.620. There was a progressively increased association of additional proteins, including apoE (pI 5.5), apoAI (pI 5.4), apoCIII (pI 5.1), and apo(a) (pI 5.5), from L1 to L5. Liquid chromatography data-independent parallel-fragmentation mass spectrometry (LC/MSE) was used to quantify protein distribution in all subfractions. On the basis of weight percentages, L1 contained 99 % apoB-100 and trace amounts of other proteins. In contrast, L5 contained 60 % apoB100 and substantially increased amounts of apo(a), apoE, apoAI, and apoCIII. The compositional characteristics contribute to L5’s electronegativity, rendering it unrecognizable by LDLR. LOX-1, which has a high affinity for negatively charged ligands, is known to mediate the signaling of proinflammatory cytokines. Thus, the chemical composition-oriented receptor selectivity hinders normal metabolism of L5, enhancing its atherogenicity through abnormal receptors, such as LOX-1.
Human Vaccines & Immunotherapeutics | 2014
Elena Curti; Christopher A. Seid; Elissa M. Hudspeth; Wanderson Rezende; Jeroen Pollet; Cliff Kwityn; Molly Hammond; Risë K. Matsunami; David A. Engler; Peter J. Hotez; Maria Elena Bottazzi
Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in the developing countries of Africa, Asia, and the Americas. In order to prevent childhood hookworm disease in resource poor settings, a recombinant vaccine is under development by the Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, a Product Development Partnership (PDP). Previously, we reported on the expression and purification of a highly promising hookworm vaccine candidate, Na-GST-1, an N. americanus glutathione s-transferase expressed in Pichia pastoris (yeast), which led to production of 1.5 g of 95% pure recombinant protein at a 20L scale.1, 2, 3 This yield and purity of Na-GST-1 was sufficient for early pilot manufacturing and initial phase 1 clinical testing. However, based on the number of doses which would be required to allow mass vaccination and a potential goal to deliver a vaccine as inexpensively as possible, a higher yield of expression of the recombinant antigen at the lowest possible cost is highly desirable. Here we report on modifications to the fermentation (upstream process) of the antigen expressed in P. pastoris, and to the purification (downstream process) of the recombinant protein that allowed for a 2–3-fold improvement in the final yield of Na-GST-1 purified protein. The major improvements included upstream process changes such as the addition of a sorbitol pulse and co-feed during methanol induction as well as an extension of the induction stage to approximately 96 hours; downstream process changes included modifying the UFDF to flat sheet with a 10 kDa Molecular Weight cut-off (MWCO), adjusting the capacity of an ion-exchange chromatography step utilizing a gradient elution as opposed to the original step elution, and altering the hydrophobic interaction chromatography conditions. The full process, as well as the purity and stability profiles of the target Na-GST-1, and its formulation on Alhydrogel®, is described.
Molecular and Cellular Endocrinology | 2014
Jan Lammel Lindemann; Anusha Angajala; David A. Engler; Paul Webb; Stephen D. Ayers
Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor β1 (TRβ1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients.
Epidemics | 2011
Ronan K. Carroll; Stephen B. Beres; Izabela Sitkiewicz; Leif E. Peterson; Risë K. Matsunami; David A. Engler; Anthony R. Flores; Paul Sumby; James M. Musser
Advancements in high-throughput, high-volume data generating techniques increasingly present us with opportunities to probe new areas of biology. In this work we assessed the extent to which four closely related and genetically representative strains of group A Streptococcus causing epidemic disease have differentiated from one another. Comparative genome sequencing, expression microarray analysis, and proteomic studies were used in parallel to assess strain variation. The extent of phenotypic differentiation was unexpectedly large. We found significant associations between genetic polymorphisms and alterations in gene expression allowing us to estimate the frequency with which specific types of polymorphisms alter gene transcription. We identified polymorphisms in the gene (ropB) encoding the RopB regulator that associate with altered transcription of speB and production of the SpeB protein, a critical secreted protease virulence factor. Although these four epidemic strains are closely related, a key discovery is that accumulation of modest genetic changes has rapidly resulted in significant strain phenotypic differentiation, including the extracellular proteome that contains multiple virulence factors. These data provide enhanced understanding of genetic events resulting in strain variation in bacterial epidemics.
Journal of Controlled Release | 2015
Kenji Yokoi; Diana Chan; Milos Kojic; Miljan Milosevic; David A. Engler; Risë K. Matsunami; Tomonori Tanei; Yuki Saito; Mauro Ferrari; Arturas Ziemys
Although nanotherapeutics can be advantageous over free chemotherapy, the benefits of drug vectors can vary from patient to patient based on differences in tumor microenvironments. Although systemic pharmacokinetics (PK) of drugs is considered as the major determinant of its efficacy in clinics, recent clinical and basic research indicates that tumor-based PK can provide better representation of therapeutic efficacy. Here, we have studied the role of the tumor extravascular tissue in the extravasation kinetics of doxorubicin (DOX), delivered by pegylated liposomes (PLD), to murine lung (3LL) and breast (4T1) tumors. We found that phenotypically different 3LL and 4T1 tumors shared the similar systemic PK, but DOX extravasation in the tumor extravascular tissue was substantially different. Liquid chromatography-mass spectrometry (LC-MS) measurements showed that DOX fluorescence imaged by fluorescence microscopy could be used as a marker to study tumor microenvironment PK, providing an excellent match to DOX kinetics in tumor tissues. Our results also suggest that therapeutic responses can be closely related to the interplay of concentration levels and exposure times in extravascular tissue of tumors. Finally, the computational model of capillary drug transport showed that internalization of drug vectors was critical and could lead to 2-3 orders of magnitude more efficient drug delivery into the extravascular tissue, compared to non-internalized localization of drug vectors, and explaining the differences in therapeutic efficacy between the 3LL and 4T1 tumors. These results show that drug transport and partitioning characteristics can be phenotype- and microenvironment-dependent and are highly important in drug delivery and therapeutic efficacy.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Laura A. Velázquez-Villegas; Victor Ortiz; Anders Ström; Nimbe Torres; David A. Engler; Risë K. Matsunami; David Ordaz-Rosado; Rocío García-Becerra; Adriana M. López-Barradas; Fernando Larrea; Jan Åke Gustafsson; Armando R. Tovar
Significance During gestation, several metabolic adaptations occur to prepare the mammary gland for lactation, a process essential to sustain the nutritional needs of the newborn. Thus, the capacity of the gland to actively synthesize proteins is dependent on the supply of amino acids regulated by specific amino acid transporters, including the sodium-coupled neutral amino acid transporter 2 (SNAT2). Our findings reveal that 17β-estradiol activates the expression of SNAT2 during gestation via an estrogen response element in the SNAT2 promoter that binds to a specific complex containing poly(ADP-ribose) polymerase 1, Lupus Ku autoantigen protein p70, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) proteins in the presence of estrogen receptor alpha (ER-α). Accordingly, estrogens regulate the expression of SNAT2 via ER-α, utilizing a transcriptional mechanism in which GAPDH, a metabolic enzyme associated with carbohydrate metabolism, is a coactivator. The sodium-coupled neutral amino acid transporter 2 (SNAT2) translocates small neutral amino acids into the mammary gland to promote cell proliferation during gestation. It is known that SNAT2 expression increases during pregnancy, and in vitro studies indicate that this transporter is induced by 17β-estradiol. In this study, we elucidated the mechanism by which 17β-estradiol regulates the transcription of SNAT2. In silico analysis revealed the presence of a potential estrogen response element (ERE) in the SNAT2 promoter. Reporter assays showed an increase in SNAT2 promoter activity when cotransfected with estrogen receptor alpha (ER-α) after 17β-estradiol stimulation. Deletion of the ERE reduced estradiol-induced promoter activity by 63%. Additionally, EMSAs and supershift assays showed that ER-α binds to the SNAT2 ERE and that this binding competes with the interaction of ER-α with its consensus ERE. An in vivo ChIP assay demonstrated that the binding of ER-α to the SNAT2 promoter gradually increased in the mammary gland during gestation and that maximal binding occurred at the highest 17β-estradiol serum concentration. Liquid chromatography-elevated energy mass spectrometry and Western blot analysis revealed that the SNAT2 ER-α–ERE complex contained poly(ADP-ribose) polymerase 1, Lupus Ku autoantigen protein p70, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) proteins and that the silencing of each of these proteins nearly abolished 17β-estradiol–stimulated SNAT2 promoter activity. Nuclear levels of GAPDH increased progressively during gestation in the mammary gland, and GAPDH binding was nucleotide-specific for the SNAT2 ERE. Thus, this study provides new insights into how the mammary epithelium adapts to control amino acid uptake through the transcriptional regulation of the SNAT2 transporter via 17β-estradiol.
Human Vaccines & Immunotherapeutics | 2016
Elissa M. Hudspeth; Qian Wang; Christopher A. Seid; Molly Hammond; Junfei Wei; Zhuyun Liu; Bin Zhan; Jeroen Pollet; Michael J. Heffernan; C. Patrick McAtee; David A. Engler; Risë K. Matsunami; Ulrich Strych; Oluwatoyin A. Asojo; Peter J. Hotez; Maria Elena Bottazzi
ABSTRACT Leishmania donovani is the major cause of visceral leishmaniasis (kala-azar), now recognized as the parasitic disease with the highest level of mortality second only to malaria. No human vaccine is currently available. A 36 kDa L. donovani nucleoside hydrolase (LdNH36) surface protein has been previously identified as a potential vaccine candidate antigen. Here we present data on the expression of LdNH36 in Pichia pastoris and its purification at the 20 L scale to establish suitability for future pilot scale manufacturing. To improve efficiency of process development and ensure reproducibility, 4 N-linked glycosylation sites shown to contribute to heterogeneous high-mannose glycosylation were mutated to glutamine residues. The mutant LdNH36 (LdNH36-dg2) was expressed and purified to homogeneity. Size exclusion chromatography and light scattering demonstrated that LdNH36-dg2 existed as a tetramer in solution, similar to the wild-type recombinant L. major nucleoside hydrolase. The amino acid mutations do not affect the tetrameric interface as confirmed by theoretical modeling, and the mutated amino acids are located outside the major immunogenic domain. Immunogenic properties of the LdNH36-dg2 recombinant protein were evaluated in BALB/c mice using formulations that included a synthetic CpG oligodeoxynucleotide, together with a microparticle delivery platform (poly(lactic-co-glycolic acid)). Mice exhibited high levels of IgG1, IgG2a, and IgG2b antibodies that were reactive to both LdNH36-dg2 and LdNH36 wild-type. While the point mutations did affect the hydrolase activity of the enzyme, the IgG antibodies elicited by LdNH36-dg2 were shown to inhibit the hydrolase activity of the wild-type LdNH36. The results indicate that LdNH36-dg2 as expressed in and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing in support of future first-in-humans phase 1 clinical trials.
Oncotarget | 2017
Haibo Wang; Bin Peng; Raj K. Pandita; David A. Engler; Risë K. Matsunami; Pavana M. Hegde; Brian E. Butler; Tej K. Pandita; Sankar Mitra; Bo Xu; Muralidhar L. Hegde
Defects in resolving kinetochore-microtubule attachment mistakes during mitosis is linked to chromosome instability associated with carcinogenesis as well as resistance to cancer therapy. Here we report for the first time that tumor suppressor p53-binding protein 1 (53BP1) is phosphorylated at serine 1342 (S1342) by Aurora kinase B both in vitro and in human cells, which is required for optimal recruitment of 53BP1 at kinetochores. Furthermore, 53BP1 staining normally localized on the outer kinetochore, extended to the whole kinetochore when it is merotelically-attached, in concert with mitotic centromere-associated kinesin. Kinetochore-binding of pS1342-53BP1 is essential for efficient resolving of merotelic attachment, a spontaneous kinetochore-microtubule connection error that usually causes aneuploidy. Consistently, loss of 53BP1 results in significant increase in lagging chromosome events, micronuclei formation and aneuploidy, due to the unresolved merotely in both cancer and primary cells, which is prevented by ectopic wild type 53BP1 but not by the nonphophorylable S1342A mutant. We thus document a novel DNA damage-independent function of 53BP1 in maintaining faithful chromosome segregation during mitosis.