David A. Hodell
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Hodell.
Science | 2012
Henry Elderfield; Patrizia Ferretti; Mervyn Greaves; Simon J Crowhurst; I. N. McCave; David A. Hodell; Alexander M. Piotrowski
Cycling Down The Mid-Pleistocene Transition, which lasted from approximately 1.25 million to 700 thousand years ago, was a period during which the dominant periodicity of Earths climate cycles inexplicably changed from 41 thousand to 100 thousand years. This change is clearly apparent in the oxygen isotopic composition of many calcifying marine organisms, but changes in both ice volume and temperature affect the signal, and so exactly what the signal means has remained unclear. Elderfield et al. (p. 704; see the Perspective by Clark) separated these two effects by measuring both the oxygen isotopic makeup and the Mg/Ca (a proxy that reflects changes in temperature only) of certain benthic foraminifera. The findings reveal the contributions of ice volume and temperature to glacial cycles, suggest when and why the Mid-Pleistocene Climate Transition occurred, and clarify how carbon is lost from the ocean-atmosphere during deglaciations but also changes because of ocean circulation. The effects of changes in ice volume and ocean temperature during the mid-Pleistocene transition have now been resolved. Earth’s climate underwent a fundamental change between 1250 and 700 thousand years ago, the mid-Pleistocene transition (MPT), when the dominant periodicity of climate cycles changed from 41 thousand to 100 thousand years in the absence of substantial change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep-ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume 900 thousand years ago. We see no evidence of a pattern of gradual cooling, but near-freezing temperatures occur at every glacial maximum.
Quaternary Science Reviews | 2002
Daniel P. Schrag; Jess F. Adkins; Katherine R. McIntyre; Jane Alexander; David A. Hodell; Christopher D. Charles; Jerry F. McManus
High-resolution oxygen and hydrogen isotope measurements were made on pore fluids from deep-sea sediments from sites in the North and South Atlantic. The data provide direct measurements of changes in the isotopic composition of bottom waters during the Last Glacial Maximum (LGM). Results from Ocean Drilling Program (ODP) Site 981 in the North Atlantic, currently bathed in North Atlantic Deep Water (NADW) reproduces previous results from the Ceara and Bermuda Rises, constraining the glacial–interglacial change in δ^(18)O of the deep Atlantic to be 0.7–0.8‰. Results from Site 984, which is located north of Site 981 and at a shallower water depth, yield a similar value (0.8‰), providing insight into the properties of Glacial North Atlantic Intermediate Water (GNAIW). Sites from ODP Leg 177 in the South Atlantic span the modern boundary between northern and southern sources of deep water. Data from the northern site (1088) yield a similar result to sites in the tropical and North Atlantic (0.7‰). At the southern site (1093), located south of the polar front, the change is substantially larger (1.1‰), representing the change in δ^(18)O of southern source waters since the LGM. These results confirm previous estimates that the global average change in δ^(18)O of seawater is 1.0±0.1‰. Hydrogen isotopes measured on pore fluids from three sites are consistent with the oxygen isotopes from these locations, giving further support to these results. At all sites studied, the temperature of the deep ocean during the LGM, calculated by combining the pore fluid results with oxygen isotope data from benthic foraminifera, was within 1°C of the freezing point of seawater.
Chemical Geology: Isotope Geoscience Section | 1990
David A. Hodell; Gregory Mead; Paul A. Mueller
Measurements of 87Sr/86Sr on samples of planktonic foraminifers were used to reconstruct changes in the Sr isotopic composition of seawater for the past 8 Ma. The late Neogene was marked by a general, but not regular, increase in 87S/ 86Sr with two breaks in slope at 5.5 and 2.5 Ma. These times mark the beginning of two periods of steep increase in 87Sr/86Sr values, relative to preceding periods characterized by essentially constant values. During the last 2.5 Ma, 87Sr/86Sr values increased at an average rate of 54° 10−6 Ma−1. This steep increase suggests that the modem ocean is not in Sr isotopic equilibrium relative to its major input fluxes. A non-equilibrium model for the modern Sr budget suggests that the residence time of Sr is ∼ 2.5 Ma, which is significantly less than previously accepted estimates of 4–5 Ma. Modelling results suggest that the increase in 87Sr/86Sr over the past 8 Ma could have resulted from a 25% increase in the riverine flux of Sr or an increase in the average 87Sr/86Sr of this flux by 0.0006. The dominant cause of increasing 87Sr/86Sr values of seawater during the late Neogene is believed to be increased rates of uplift and chemical weathering of mountainous regions. Calculations suggest that uplift and weathering of the Himalayan-Tibetan region alone can account for the majority of the observed 87Sr/86Sr increase since the early Late Miocene. Exhumation of Precambrian shield areas by continental ice-sheets may have contributed secondarily to accelerated mechanical and chemical weathering of old crustal silicates with high 87Sr/86Sr values. In fact, the upturn in 87Sr/86Sr at 2.5 Ma coincides with increased glacial activity in the Northern Hemisphere. A variety of geochemical (87Sr/86Sr, Ge/Si, δ13C, CCD, etc.) and sedimentologic data (accumulation rates) from the marine sedimentary record are compatible with a progressive increase in the chemical weathering rate of continents and dissolved riverine fluxes during the late Cenozoic. We hypothesize that chemical weathering of the continents and dissolved riverine fluxes to the oceans reached a maximum during the late Pleistocene because of repeated glaciations, increased continental exposure by lowered sea level, and increased continental relief resulting from high rates of tectonism.
Geology | 1991
David A. Hodell; Paul A. Mueller; Jose R Garrido
The authors report 261 strontium isotopic analyses of well-preserved planktonic foraminifers from three Deep Sea Drilling Project Sites (519, 588, and 607). These samples cover the period from 24 Ma to present with an average of approximately one sample per 100 ka. The combination of high sample density and uniformity of analytical procedures has produced a well-defined record of changes in the {sup 87}Sr/{sup 86}Sr of seawater during the Neogene. The record can be viewed as a series of essentially linear segments with slopes ranging from as high as 6{times}10{sup {minus}5}/m.y. to as low as 0/m.y. The times associated with major inflections in the curve do not appear to correspond to simple geologic phenomena such as eustatic cycles, but are probably controlled by a combination of tectonic and climatic factors that influenced the abundance and isotopic composition of terrestrial strontium input to the oceans. The strontium isotopic data are consistent with a progressive increase in the chemical weathering rates of the continents during the Neogene, probably related to repeated glaciations, increased exposure of continents by lowered sea level, and increased continental relief resulting from high rates of tectonic uplift.
Paleoceanography | 2001
David A. Hodell; Jason H. Curtis; Francisco Javier Sierro; Maureen E. Raymo
Ocean Drilling Program (ODP) Site 982 in the North Atlantic contains a complete latest Miocene to early Pliocene section that was tuned to the astronomical timescale by correlating the record of gamma ray attenuation (GRA) bulk density to summer insolation at 65°N and the benthic δ18O signal to orbital obliquity for the interval from 4.6 to 7.5 Ma. The astronomical tuning of the Site 982 record permits a direct bed-to-bed correlation to the cyclostratigraphy of Messinian sections in the Mediterranean [Krijgsman et al., 1999a, 2001]. The benthic δ18O signal at Site 982 records a latest Miocene glacial period that lasted from ∼6.26 to 5.50 Ma and consisted of 18 glacial-to-interglacial oscillations that were controlled by the 41-kyr cycle of obliquity. Although the intensification of glaciation at 6.26 Ma may have contributed to the restriction of the Mediterranean, it preceded the depositional onset of the lower evaporite unit at 5.96 Ma by some 300 kyr. The transition from Stage TG12 to TG11 at 5.5 Ma marks the end of the latest Miocene glacial period and precedes the Miocene/Pliocene boundary by 170 kyr. Although benthic δ18O values are relatively low and δ18O of bulk carbonate reaches a minimum at the Miocene/Pliocene boundary at 5.33 Ma, there is no single “event” that would indicate deglaciation and sea level rise as the cause of the reflooding of the Mediterranean. We conclude that glacioeustatic changes alone were not responsible for either the start or end of evaporite deposition during the Messinian, suggesting that tectonic or local climate changes in the Mediterranean region were the dominant cause(s).
Paleoceanography | 1992
M. E. Raymo; David A. Hodell; Eystein Jansen
Carbon isotopic records from benthic foraminifera are used to map patterns of deep ocean circulation between 3 and 2 million years ago, the interval when significant northern hemisphere glaciation began. The δ18O and δ13C data from four Atlantic sites (552, 607, 610, and 704) and one Pacific site (677) show that global cooling over this interval was associated with increased suppression of North Atlantic Deep Water (NADW) formation. However, the relative strength of NADW production was always greater than is observed during late Pleistocene glaciations when extreme decreases in NADW are observed in the deep North Atlantic. Our data indicate that an increase in the equator-to-pole temperature gradient associated with the onset of northern hemisphere glaciation did not intensify deepwater production in the North Atlantic but rather the opposite occurred. This is not unexpected as it is the “warm high-salinity” characteristic, rather than the “low temperature,” of thermocline waters that is critical to the deepwater formation process in this region today.
Journal of Paleolimnology | 1999
Mark Brenner; Thomas J. Whitmore; Jason H. Curtis; David A. Hodell; Claire L. Schelske
We explored the use of carbon and nitrogen isotopes (δ13C and δ15N) in sedimented organic matter (OM) as proxy indicators of trophic state change in Florida lakes. Stable isotope data from four 210Pb-dated sediment cores were compared stratigraphically with established proxies for historical trophic state (diatom-inferred limnetic total phosphorus, sediment C/N ratio) and indicators of cultural disturbance (sediment total P and 226Ra activity). Diatom-based limnetic total P inferences indicate a transition from oligo-mesotrophy to meso-eutrophy in Clear Lake, and from eutrophy to hypereutrophy in Lakes Parker, Hollingsworth and Griffin. In cores from all four lakes, the carbon isotopic signature of accumulated OM generally tracks trophic state inferences and cultural impact assessments based on other variables. Oldest sediments in the records yield lower diatom-inferred total limnetic P concentrations and display relatively low δ13C values. In the Clear, Hollingsworth and Parker records, diatom-inferred nutrient concentrations increase after ca. AD 1900, and are associated stratigraphically with higher δ13C values in sediment OM. In the Lake Griffin core, both proxies display slight increases before ~1900, but highest values occur over the last ~100 years. As Lakes Clear, Hollingsworth and Parker became increasingly nutrient-enriched over the past century, the δ15N of sedimented organic matter decreased. This reflects, in part, the increasing relative contribution of nitrogen-fixing cyanobacteria to sedimented organic matter as primary productivity increased in these waterbodies. The Lake Griffin core displays a narrow range of both δ13C and δ15N values. Despite the complexity of carbon and nitrogen cycles in lakes, stratigraphic agreement between diatom-inferred changes in limnetic total P and the stable isotope signatures of sedimented OM suggests that δ13C and δ15N reflect shifts in historic lake trophic state.
Earth and Planetary Science Letters | 1989
David A. Hodell; Paul A. Mueller; Judith A. McKenzie; Gregory Mead
A curve describing the variation of the strontium isotopic composition of seawater for the late Neogene (9 to 2 Ma) was constructed from 87Sr/86Sr analyses of marine carbonate in five Deep Sea Drilling Project (DSDP) sites: 502, 519, 588, 590, and 593. The strontium isotopic composition of the oceans increased between 9 and 2 Ma with several changes in slope. From 9 to 5.5 Ma, 87Sr/86Sr values were nearly constant at ∼ 0.708925. Between 5.5 and 4.5 Ma, 87Sr/86Sr ratios increased monotonically at a rate of ∼ 1 × 10−4 per million years. The steep slope during this interval provides the potential for high resolution strontium isotope stratigraphy across the Miocene/Pliocene boundary. The rate of change of 87Sr/86Sr decreases to near zero again during the interval 4.5–2.5 Ma, and ratios average 0.709025. The relatively rapid increase of 87Sr/86Sr between 5.5 and 4.5 Ma must be related to changes in the flux or average 87Sr/86Sr ratios of the major inputs of Sr to the oceans. Quantitative modelling of these inputs suggests that the increase was most probably caused by an increase in the dissolved riverine flux of strontium to the oceans, an increase in the average 87Sr/86Sr composition of river water, or some combination of these parameters. Modelling of this period as a transient-state requires a pulse-like increase in the input of87Sr to the oceans between 5.5 and 4.5 Ma. Alternatively, the 5.5–4.5 Ma period can be modelled as a simple transition from one steady-state to another if the oceanic residence time of strontium was eight times less than the currently accepted value of 4 Ma. During the time interval of steep 87Sr/86Sr increase, other geochemical and sedimentologic changes also occur including an increase in sediment accumulation rates, a drop in the calcite compensation depth (CCD), and a decrease in the δ13C of dissolved bicarbonate (i.e., “carbon shift”). The simplest mechanism to explain 87Sr/86Sr variation and these related geochemical changes is to invoke an increase in the dissolved chemical fluxes carried by rivers to the oceans. This, in turn, implies increased chemical denudation rates of the continents and shelves during the late Neogene. The increase in chemical weathering rates is attributed to increased exposure of the continents by eustatic regression, intensified glacial/interglacial cycles, and accelerated rates of global tectonism beginning at 5.5 Ma during the latest Miocene.
Earth and Planetary Science Letters | 1997
James E T Channell; David A. Hodell; Benoît Lehman
Abstract At ODP Site 983, relative geomagnetic paleointensity and planktic and benthic δ18O records have been acquired for the last 350 kyr. The mean sedimentation rate in this interval is 11.3 cm/kyr. Magnetic properties and hysteresis ratios indicate that pseudo-single domain magnetite is the remanence carrier. Volume susceptibility (k), anhysteretic (ARM) and isothermal (IRM) remanence values vary by a factor of 3–4, well within the criteria usually cited for paleointensity studies. Natural remanent magnetization (NRM) is normalized by ARM and IRM to acquire the paleointensity proxy. Arithmetic means of NRM/ARM and NRM/IRM, calculated for five demagnetization steps in the 25–45 mT range, constitute the relative paleointensity estimates. Some paleointensity lows (particularly those at ∼40, ∼120 and ∼188 ka) are associated with directional excursions of the field, especially the event at ∼188 ka (referred to here as the Iceland Basin Event) that constitutes a short-lived polarity reversal. For the last 200 kyr, the records can be correlated with other high-resolution paleointensity records such as those from the Labrador Sea, Mediterranean/Somali Basin and Sulu Sea, implying that the millennial scale features are globally synchronous. A labeling system for paleointensity features is proposed that ties prominent highs and lows to oxygen isotope stages.
Science | 2014
Alfredo Martinez-Garcia; Daniel M. Sigman; Haojia Ren; Robert F. Anderson; Marietta Straub; David A. Hodell; Samuel L. Jaccard; Timothy I. Eglinton; Gerald H. Haug
Productive Dustiness The idea that biological productivity in the surface ocean is limited by a lack of available iron has been widely accepted, but it has been difficult to show that this effect might have operated in the geological past. Martínez-García et al. (p. 1347) investigated the isotopic composition of foraminifera-bound nitrogen in samples from an Ocean Drilling Project sediment core and found millennial-scale changes in nitrate consumption correlated with fluxes in the iron burial and productivity proxies over the past 160,000 years. Hence, in the Southern Ocean the biological pump was strengthened when dust fluxes were high, which explains a significant part of the difference in atmospheric CO2 concentrations observed to occur across glacial cycles. Nitrogen isotopes in foraminifera show the role of iron fertilization on atmospheric carbon dioxide during the last ice age. John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age nitrate consumption, burial fluxes of iron, and proxies for productivity. Peak glacial times and millennial cold events are characterized by increases in dust flux, productivity, and the degree of nitrate consumption; this combination is uniquely consistent with Subantarctic iron fertilization. The associated strengthening of the Southern Ocean’s biological pump can explain the lowering of CO2 at the transition from mid-climate states to full ice age conditions as well as the millennial-scale CO2 oscillations.