Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Hovda is active.

Publication


Featured researches published by David A. Hovda.


Journal of Neurotrauma | 2002

Clinical Trials in Head Injury

Raj K. Narayan; Mary Ellen Michel; Beth Ansell; Alex Baethmann; Anat Biegon; Michael B. Bracken; M. Ross Bullock; Sung C. Choi; Guy L. Clifton; Charles F. Contant; William M. Coplin; W. Dalton Dietrich; Jamshid Ghajar; Sean M. Grady; Robert G. Grossman; Edward D. Hall; William Heetderks; David A. Hovda; Jack Jallo; Russell L. Katz; Nachshon Knoller; Patrick M. Kochanek; Andrew I.R. Maas; Jeannine Majde; Donald W. Marion; Anthony Marmarou; Lawrence F. Marshall; Tracy K. McIntosh; Emmy R. Miller; Noel Mohberg

Secondary brain damage, following severe head injury is considered to be a major cause for bad outcome. Impressive reductions of the extent of brain damage in experimental studies have raised high expectations for cerebral neuroprotective treatment, in the clinic. Therefore multiple compounds were and are being evaluated in trials. In this review we discuss the pathomechanisms of traumatic brain damage, based upon their clinical importance. The role of hypothermia, mannitol, barbiturates, steroids, free radical scavengers, arachidonic acid inhibitors, calcium channel blockers, N-methyl-D-aspartate (NMDA) antagonists, and potassium channel blockers, will be discussed. The importance of a uniform strategic approach for evaluation of potentially interesting new compounds in clinical trials, to ameliorate outcome in patients with severe head injury, is proposed. To achieve this goal, two nonprofit organizations were founded: the European Brain Injury Consortium (EBIC) and the American Brain Injury Consortium (ABIC). Their aim lies in conducting better clinical trials, which incorporate lessons learned from previous trials, such that the succession of negative, or incomplete studies, as performed in previous years, will cease.


Journal of Cerebral Blood Flow and Metabolism | 2005

Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study

Paul Vespa; Marvin Bergsneider; Nayoa Hattori; Hsiao-Ming Wu; Sung-Cheng Huang; Neil A. Martin; Thomas C. Glenn; David L. McArthur; David A. Hovda

Brain trauma is accompanied by regional alterations of brain metabolism, reduction in metabolic rates and possible energy crisis. We hypothesize that microdialysis markers of energy crisis are present during the critical period of intensive care despite the absence of brain ischemia. In all, 19 brain injury patients (mean GCS 6) underwent combined positron emission tomography (PET) for metabolism of glucose (CMRglu) and oxygen (CMRO2) and cerebral microdialysis (MD) at a mean time of 36 h after injury. Microdialysis values were compared with the regional mean PET values adjacent to the probe. Longitudinal MD data revealed a 25% incidence rate of metabolic crisis (elevated lactate/pyruvate ratio (LPR)>40) but only a 2.4% incidence rate of ischemia. Positron emission tomography imaging revealed a 1% incidence of ischemia across all voxels as measured by oxygen extraction fraction (OEF) and cerebral venous oxygen content (CvO2). In the region of the MD probe, PET imaging revealed ischemia in a single patient despite increased LPR in other patients. Lactate/pyruvate ratio correlated negatively with CMRO2 (P<0.001), but not with OEF or CvO2. Traumatic brain injury leads to a state of persistent metabolic crisis as reflected by abnormal cerebral microdialysis LPR that is not related to ischemia.


Brain Research | 1991

Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper- and subsequent hypometabolic state

Atsuo Yoshino; David A. Hovda; Tatsuro Kawamata; Yoichi Katayama; Donald P. Becker

Following cerebral concussion, in which there is no evidence of direct morphological damage, cells are exposed to an increase in extracellular potassium as well as an accumulation of calcium. This concussion-induced ionic flux most likely alters the cellular energy demands thereby modifying metabolic processes. To investigate the metabolic changes after cerebral concussion, local cerebral metabolic rates for glucose (lCMRglc) utilizing [14C]2-deoxy-D-glucose were studied in rats (n = 98; 250-300 g) immediately, 30 min, 6 h, 1, 2, 3, 5 and 10 days following a unilateral frontoparietal fluid percussion (F-P) injury (3.7-4.3 atm). Compared to sham controls, animals exhibited bilateral hypermetabolism immediately following brain injury. However, this effect was more pronounced in structures ipsilateral to the site of F-P and was especially marked for the cerebral cortex (46.6-30.1% higher than control) and hippocampus (90.1-84.4% higher than control). By 30 min post-trauma many ipsilateral regions still showed evidence of hypermetabolism, although their lCMRglc had subsided. Beginning as early as 6 h following injury many regions within the ipsilateral cortex and hippocampus went into a state of metabolic depression (16.4-33.7% of control) which lasted for as long as 5 days. These results indicate that, although not mechanically damaged from the insult, cells exposed to concussive injury dramatically alter their metabolic functioning. This period of post-concussive metabolic dysfunction may delineate a period of time, following injury, during which cells are functionally compromised.


Neuroscience | 2004

VOLUNTARY EXERCISE FOLLOWING TRAUMATIC BRAIN INJURY: BRAIN-DERIVED NEUROTROPHIC FACTOR UPREGULATION AND RECOVERY OF FUNCTION

Grace S. Griesbach; David A. Hovda; Raffaella Molteni; Aiguo Wu; Fernando Gomez-Pinilla

Voluntary exercise leads to an upregulation of brain-derived neurotrophic factor (BDNF) and associated proteins involved in synaptic function. Activity-induced enhancement of neuroplasticity may be considered for the treatment of traumatic brain injury (TBI). Given that during the first postinjury week the brain is undergoing dynamic restorative processes and energetic changes that may influence the outcome of exercise, we evaluated the effects of acute and delayed exercise following experimental TBI. Male Sprague-Dawley rats underwent either sham or lateral fluid-percussion injury (FPI) and were housed with or without access to a running wheel (RW) from postinjury days 0-6 (acute) or 14-20 (delayed). FPI alone resulted in significantly elevated levels of hippocampal phosphorylated synapsin I and phosphorylated cyclic AMP response element-binding-protein (CREB) at postinjury day 7, of which phosphorylated CREB remained elevated at postinjury day 21. Sham and delayed FPI-RW rats showed increased levels of BDNF, following exercise. Exercise also increased phosphorylated synapsin I and CREB in sham rats. In contrast to shams, the acutely exercised FPI rats failed to show activity-dependent BDNF upregulation and had significant decreases of phosphorylated synapsin I and total CREB. Additional rats were cognitively assessed (learning acquisition and memory) by utilizing the Morris water maze after acute or delayed RW exposure. Shams and delayed FPI-RW animals benefited from exercise, as indicated by a significant decrease in the number of trials to criterion (ability to locate the platform in 7 s or less for four consecutive trials), compared with the delayed FPI-sedentary rats. In contrast, cognitive performance in the acute FPI-RW rats was significantly impaired compared with all the other groups. These results suggest that voluntary exercise can endogenously upregulate BDNF and enhance recovery when it is delayed after TBI. However, when exercise is administered to soon after TBI, the molecular response to exercise is disrupted and recovery may be delayed.


Clinics in Sports Medicine | 2011

The molecular pathophysiology of concussive brain injury.

Garni Barkhoudarian; David A. Hovda; Christopher C. Giza

Concussion or mild traumatic brain injury (mTBI) is a condition that affects hundreds of thousands of patients worldwide. Understanding the pathophysiology of this disorder can help manage its acute and chronic repercussions. Immediately following mTBI, there are several metabolic, hemodynamic, structural, and electric changes that alter normal cerebral function. These alterations can increase the brains vulnerability to repeat injury and long-term disability. This review evaluates current studies from the bench to the bedside of mTBI. Acute and chronic effects of concussion are measured in both animal and clinical studies. Also, the effect of repeat concussions is analyzed. Concussion-induced pathophysiology with regards to glucose metabolism changes, mitochondrial dysfunction, axonal injury, and structural damage are evaluated. Translational studies such as functional magnetic resonance imaging, magnetic resonance spectroscopy and diffusion tensor imaging prove to be effective clinical tools for both prognostic and treatment parameters. Understanding the neurobiology of concussion will lead to development and validation of physiological biomarkers of this common injury. These biomarkers (eg, laboratory tests, imaging, electrophysiology) will then allow for improved detection, better functional assessment and evidence-based return to play recommendations.


Neurosurgery | 2014

The New Neurometabolic Cascade of Concussion

Christopher C. Giza; David A. Hovda

Objective: To review the underlying pathophysiologic processes of concussive brain injury and relate these neurometabolic changes to clinical sports-related issues such as injury to the developing brain, overuse injury, and repeated concussion. Data Sources: Over 100 articles from both basic science and clinical medical literature selected for relevance to concussive brain injury, postinjury pathophysiology, and recovery of function. Data Synthesis: The primary elements of the pathophysiologic cascade following concussive brain injury include abrupt neuronal depolarization, release of excitatory neurotransmitters, ionic shifts, changes in glucose metabolism, altered cerebral blood flow, and impaired axonal function. These alterations can be correlated with periods of postconcussion vulnerability and with neurobehavioral abnormalities. While the time course of these changes is well understood in experimental animal models, it is only beginning to be characterized following human concussion. Conclusions/Recommendations: Following concussion, cerebral pathophysiology can be adversely affected for days in animals and weeks in humans. Significant changes in cerebral glucose metabolism can exist even in head-injured patients with normal Glasgow Coma Scores, underscoring the need for indepth clinical assessment in an effort to uncover neurocognitive correlates of altered cerebral physiology. Improved guidelines for clinical management of concussion may be formulated as the functional significance and duration of these postinjury neurometabolic derangements are better delineated.


Brain Research | 1993

Concussive brain injury is associated with a prolonged accumulation of calcium : a 45Ca autoradiographic study

Igor Fineman; David A. Hovda; Mayumi L. Smith; Atsuo Yoshino; Donald P. Becker

In order to determine the extent and duration of calcium (Ca2+) flux following a lateral fluid percussion brain injury in the rat, 45Ca autoradiography was used to study animals immediately, 6, 24 and 96 h after the insult. In addition, cell suspension studies were conducted to determine the extent of cellular flux of 45Ca. Optical density and/or scintillation counting was utilized to provide a relative measure of 45Ca accumulation within 20 different structures. The results indicated that in animals who exhibited no gross morphological damage, 45Ca accumulation following injury was exhibited primarily within the ipsilateral cerebral cortex, dorsal hippocampus and striatum. This accumulation continued for several days returning to control levels by the 4th day after injury. In animals who sustained morphological damage, the contusion site exhibited a marked accumulation of 45Ca which did not resolve spontaneously over the course of 4 days. We conclude from this work that Ca2+ flux is a major component of this experimental model of traumatic injury. Furthermore, that depending on the extent of cell damage, the accumulation of Ca2+ is regionally different. Finally, that even in an injury which by itself does not produce gross morphological tissue damage, accumulation of Ca2+ can continue for at least 48 h.


Critical Care Medicine | 2007

Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis

Paul Vespa; Chad Miller; David L. McArthur; Mathew Eliseo; Maria Etchepare; Daniel Hirt; Thomas C. Glenn; Neil A. Martin; David A. Hovda

Objective: To determine whether nonconvulsive electrographic post‐traumatic seizures result in increases in intracranial pressure and microdialysis lactate/pyruvate ratio. Design: Prospective monitoring with retrospective data analysis. Setting: Single center academic neurologic intensive care unit. Patients: Twenty moderate to severe traumatic brain injury patients (Glasgow Coma Score 3–13). Measurements and Main Results: Continuous electroencephalography and cerebral microdialysis were performed for 7 days after injury. Ten patients had seizures and were compared with a matched cohort of traumatic brain injury patients without seizures. The seizures were repetitive and constituted status epilepticus in seven of ten patients. Using a within‐subject design, post‐traumatic seizures resulted in episodic increases in intracranial pressure (22.4 ± 7 vs. 12.8 ± 4.3 mm Hg; p < .001) and an episodic increase in lactate/pyruvate ratio (49.4 ± 16 vs. 23.8 ± 7.6; p < .001) in the seizure group. Using a between‐subjects comparison, the seizure group demonstrated a higher mean intracranial pressure (17.6 ± 6.5 vs. 12.2 ± 4.2 mm Hg; p < .001), a higher mean lactate/pyruvate ratio (38.6 ± 18 vs. 27 ± 9; p < .001) compared with nonseizure patients. The intracranial pressure and lactate/pyruvate ratio remained elevated beyond postinjury hour 100 in the seizure group but not the nonseizure group (p < .02). Conclusion: Post‐traumatic seizures result in episodic as well as long‐lasting increases in intracranial pressure and microdialysis lactate/pyruvate ratio. These data suggest that post‐traumatic seizures represent a therapeutic target for patients with traumatic brain injury.


Critical Care Medicine | 2006

Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury

Paul Vespa; Robert Boonyaputthikul; David L. McArthur; Chad Miller; Maria Etchepare; Marvin Bergsneider; Thomas C. Glenn; Neil A. Martin; David A. Hovda

Objective:To determine that intensive glycemic control does not reduce microdialysis glucose concentration brain metabolism of glucose. Design:Prospective monitoring followed by retrospective data analysis of cerebral microdialysis and global brain metabolism. Setting:Single center, academic neurointensive care unit. Patients:Forty-seven moderate to severe traumatic brain injury patients. Interventions:A nonrandomized, consecutive design was used for glycemic control with loose insulin (n = 33) for the initial 2 yrs or intensive insulin therapy (n = 14) for the last year. Measurements and Main Results:In 14 patients treated with intensive insulin therapy, there was a reduction in microdialysis glucose by 70% of baseline concentration compared with a 15% reduction in 33 patients treated with a loose insulin protocol. Despite this reduction in microdialysis glucose, the global metabolic rate of glucose did not change. However, intensive insulin therapy was associated with increased incidence of microdialysis markers of cellular distress, namely elevated glutamate (38 ± 37% vs. 10 ± 17%, p < .01), elevated lactate/pyruvate ratio (38 ± 37% vs. 19 ± 26%, p < .03) and low glucose (26 ± 17% vs. 11 ± 15%, p < .05, and increased global oxygen extraction fraction. Mortality was similar in the intensive and loose insulin treatment groups (14% vs. 15%, p = .9), as was 6-month clinical outcome (p = .3). Conclusions:Intensive insulin therapy results in a net reduction in microdialysis glucose and an increase in microdialysis glutamate and lactate/pyruvate without conveying a functional outcome advantage.


Journal of Cerebral Blood Flow and Metabolism | 2003

Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study.

Paul Vespa; David L. McArthur; Kristine O'Phelan; Thomas C. Glenn; Maria Etchepare; Daniel F. Kelly; Marvin Bergsneider; Neil A. Martin; David A. Hovda

Disturbed glucose brain metabolism after brain trauma is reflected by changes in extracellular glucose levels. The authors hypothesized that posttraumatic reductions in extracellular glucose levels are not due to ischemia and are associated with poor outcome. Intracerebral microdialysis, electroencephalography, and measurements of brain tissue oxygen levels and jugular venous oxygen saturation were performed in 30 patients with traumatic brain injury. Levels of glucose, lactate, pyruvate, glutamate, and urea were analyzed hourly. The 6-month Glasgow Outcome Scale extended (GOSe6) score was assessed for each patient. In regions of increased glucose utilization defined by positron emission tomography, the extracellular glucose concentration was less than 0.2 mmol/l. Extracellular glucose values were less than 0.2 mmol during postinjury days 0 to 7 in 19% to 30% of hourly samples on each day. Transient decreases in glucose levels occurred with electrographic seizures and nonischemic reductions in cerebral perfusion pressure and jugular venous oxygen saturation. Glutamate levels were elevated in the majority of low-glucose samples, but the lactate/pyruvate ratio did not indicate focal ischemia. Terminal herniation resulted in reductions in glucose with increases in the lactate/pyruvate ratio but not in lactate concentration alone. GOSe6 scores correlated with persistently low glucose levels, combined early low glucose levels and low lactate/glucose ratio, and with the overall lactate/glucose ratio. These results suggest that the level of extracellular glucose is typically reduced after traumatic brain injury and associated with poor outcome, but is not associated with ischemia.

Collaboration


Dive into the David A. Hovda's collaboration.

Top Co-Authors

Avatar

Paul Vespa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil A. Martin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge