Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Hughes is active.

Publication


Featured researches published by David A. Hughes.


Ultrasonics | 2009

Investigation of dental samples using a 35MHz focussed ultrasound piezocomposite transducer.

David A. Hughes; John M. Girkin; Simon P. Poland; Christopher Longbottom; T.W. Button; J. Elgoyhen; H. Hughes; Carl Meggs; S. Cochran

Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique. A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a -6 dB bandwidth of 24 MHz. The transducer has an axial resolution of 180 microm and a spatial resolution of 110 microm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method. The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p<0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.


Current Genomics | 2012

Collective epithelial and mesenchymal cell migration during gastrulation.

Manli Chuai; David A. Hughes; Cornelis J. Weijer

Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.


Sensors | 2014

Acoustic devices for particle and cell manipulation and sensing.

Yongqiang Qiu; Han Wang; Christine Demore; David A. Hughes; Peter Glynne-Jones; Sylvia Gebhardt; Aleksandrs Bolhovitins; Romans Poltarjonoks; Kees Weijer; Andreas Schönecker; Martyn Hill; S. Cochran

An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.


internaltional ultrasonics symposium | 2007

5B-2 3D Imaging of Teeth Using High Frequency Ultrasound

David A. Hughes; T.W. Button; S. Cochran; J. Elgoyhen; John M. Girkin; H. Hughes; Christopher Longbottom; Carl Meggs; S. Poland

It was shown in the late 1960s that the internal structures of teeth could be investigated using ultrasonic pulse echo techniques with 4 MHz contact probes. However, the low frequency limited the resolution of the system and therefore the thickness of dental structures which could be observed. More recent reports have increased frequencies into the region of 10 to 20 MHz. With such frequencies, the resolution in enamel is improved to 0.5 mm. However, the average thickness of enamel in human teeth is around 1.5 mm, implying that even the improved resolution is still inadequate for detailed images and diagnosis. As well as the considerations about the resolution of the system, it has been shown that the attenuation and losses due to acoustic boundaries in tooth structures are detrimental to image reconstruction, with potentially useful information lost or degraded. Therefore, it is essential to have maximum energy transfer into, and back out from, the tooth. The work presented here introduces a novel high frequency focused ultrasound transducer operating at 35 MHz. In order to avoid the natural complexities of the human tooth in the experiment, human incisors were prepared so that only one layer of enamel and dentine were present. The sample was then immersed in distilled water on a translation stage and an x-y raster ultrasound scan was performed. A number of signal processing algorithms were applied to the raw data including correction of distortion and position via correlation and high and low bandpass filtering. The image processing application IMAGEJ was then used to reconstruct a 3D representation and rotation of the processed dataset. The individual A-scans which in turn create the B-scans and 3D images are of a much higher resolution in both the temporal and spatial domain than previously published. The 35 MHz operating frequency gives a resolution of 0.19 mm in the enamel layer, which is at a useful level for the detection of dental caries and more specifically acid erosion. The high frequency also produces a spotsize of 110 mum which allows for accurate localisation in the individual A-scans. The results are believed to be the first known 3D high resolution ultrasound images of the enamel-dentine junction.


internaltional ultrasonics symposium | 2011

Multi-wavelength ultrasonic standing wave device for non-invasive cell manipulation and characterisation

Yongqiang Qiu; Christine Demore; S. Sharma; S. Cochran; David A. Hughes; Kees Weijer

Ultrasonic standing wave manipulation has many promising applications in cell biology, such as noncontact investigation of cell and tissue mechanics. In this paper, recent progress in developing a high frequency resonant chamber using a lithium niobate transducer is presented. This device is designed to sit on a petri dish or microscope slide, with the propagation direction parallel to the dish surface, in a configuration compatible with an optical microscope. It comprises a high frequency ultrasonic transducer with a low acoustic impedance transducer mounting, a polished reflector, and a set of precision spacers between the reflector and transducer. The prototype device demonstrates the feasibility of trapping microparticles with ultrasound radiation forces in multiple trapping sites, and the short wavelength reduces the separation of trapping sites to the same order as the cell dimensions. The basic design of device was validated with one dimensional modelling and finite element simulation. Experimental results of trapping 10 μm polystyrene beads correspond to simulated pressure distributions showing multiples of half-wavelength standing waves.


internaltional ultrasonics symposium | 2009

Focused ultrasound for early detection of tooth decay

David A. Hughes; John M. Girkin; S. Poland; Christopher Longbottom; S. Cochran

Ultrasound is a well-established tool for medical imaging but it has yet to emerge in routine use in dental diagnostics. Nevertheless, it was shown in the late 1970s that ultrasound can be used to probe the internal structures of teeth, and more recently to observe surface changes due to caries and acid erosion.


Journal of Physics: Conference Series | 2015

Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

David A. Hughes; Ashwin Sampathkumar; Christopher Longbottom; K.J. Kirk

Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (<100μm) of the lesion. A fine-resolution (600 nm) ultra-broadband (200 MHz) all-optical photoacoustic microscopy system was is used to image the early signs of tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system.


internaltional ultrasonics symposium | 2012

Investigating the motility of Dictyostelium discodeum using high frequency ultrasound as a method of manipulation

David A. Hughes; Cornelis J. Weijer; Yongqiang Qiu

Cell motility is an essential process in the development of all organisms. The earliest stages of embryonic development involve massive reconfigurations of groups of cells to form the early body structures. Embryos are very complex systems, and therefore to investigate the molecular and cellular basis of development a simpler genetically tractable model system is used. The social amoeba Dictyostelium Discoideum is known to chemotax up a chemical gradient. From previous work, it is clear that cells generate forces in the nN range. This is above the limit of optical tweezers and therefore we are investigating the use of acoustic tweezers instead. In this paper, we present recent progress of the investigation in to the use of acoustic tweezers for the characterisation of cell motility and forces. We will describe the design, modelling and fabrication of several devices. All devices use high frequency (>15MHz) ultrasound to exert a force on the cells to position and/or stall them. Also, each device is designed to be suitable for the life-sciences laboratory where form-factor and sterility is concerned. A transducer (LiNo) operating at 24 MHz excites resonant acoustic modes in a rectangular glass capillary (100um by 2mm). This device is used to alter the directionality of the motile cells inside the fluid filled capillary. A quarter-ring PZT26 transducer operating at 20.5MHz is shown to be useful for manipulating cells using axial acoustic radiation forces. This device is used to exert a force on cells and shown to pull them away from a coverslip. The presented devices show promise for the manipulation of cells in suspension. Currently the forces produced are below that required for adherent cells; the reasons for this are discussed. We also report on other issues that arise when using acoustic waves for manipulating biological samples such as streaming and heating.


Ultrasonics | 2015

Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data

David A. Hughes; Yongqiang Qiu; Christine Demore; Cornelis J. Weijer; S. Cochran

Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator.


British Journal of Guidance & Counselling | 1985

Some limitations of the interview form in careers counselling for the mildly mentally handicapped

David A. Hughes; David May

Abstract An examination is offered of the structure of talk in interviews in which careers officers ask mildly mentally handicapped teenagers about their preferences for post-school placement. Careers interviews in the special school represent a particularly asymmetrical version of professional/client interaction, in which the direction and scope of talk is determined almost wholly by the professional. The difficult task of getting mentally handicapped leavers to ‘take the floor’ in the formal interview situation is one that careers officers typically approach by moving towards certain highly directive elicitation practices. It is argued that information gathered via traditional interviews amounts to an extremely problematic basis for placement. Possible directions for changes in the focus of careers work with such leavers are suggested.

Collaboration


Dive into the David A. Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Meggs

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T.W. Button

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Poland

University of Strathclyde

View shared research outputs
Researchain Logo
Decentralizing Knowledge